期刊文献+

不完全分形多孔介质热导率模型 被引量:3

Thermal Conductivity Model of Incomplete Fractal Porous Media
下载PDF
导出
摘要 将多孔介质的物理构成分为具有分形结构的团聚体集合和不具有分形特性的固相和孔隙相,建立了简化单元体模型解释其微观结构。结合多孔介质在干燥过程中热量守恒定律和傅里叶导热定律导出了材料总有效热导率模型。此模型无经验常数,每一个参数都有物理意义。研究结果表明,有效热导率与迂曲分形维数、面积分形维数、孔隙率和热风温度呈反比,与热风速率和时间呈正比。 The porous media was divided into the fractal aggregation and the non fractal solid phase and pore phase, and a simplified cell model was made to show the microstructure. Porosity, areal fractal dimension, tortuosity fractal dimension, tortuosity, solid phase area and pore phase area of incomplete fractal porous were exhibited. The effective thermal conductivity was built combined with thermal energy and Fourier's law of heat conduction during drying, thermal energy including the heat which required for solid phase during the drying and the heat coming from the circulating hot air. The model was not based on empirical formulas and assumed thermal resistance, and each symbol had definite physical meaning. The result showed that effective thermal conductivity had a negative correlation with the tortuosity fractal dimension, porosity, areal fractal dimension and hot air temperature, while it has a positive correlation with the hot air rate and time.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2014年第8期220-224,共5页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(51165014) 云南省教育厅重大专项资助项目(ZD2010002) 云南省科技计划项目资助项目(2012FB130) 云南省教育厅科学研究基金资助项目(2012Y540)
关键词 不完全分形 有效热导率 多孔介质 Incomplete fractal Effective thermal conductivity Porous media
  • 相关文献

参考文献13

  • 1苗恩铭,陈甦欣,牛鹏程,颜焱,费业泰.飞秒激光微加工中热熔化与热传递现象研究[J].农业机械学报,2011,42(4):224-228. 被引量:3
  • 2Yang C, Nakayama A. A synthesis of tortuosity and dispersion in effective thermal conductivity of porous media[ J]. International Journal of Heat and Mass Transfer, 2010, 53 (15 -16) : 3222 -3230.
  • 3Wang Jianfeng, Carson J K, North M F, et al. A new structural model of effective thermal conductivity for heterogeneous materials with co-continuous phases[ J]. International Journal of Heat and Mass Transfer, 2008, 51 (9 -10) : 2389 -2397.
  • 4Zhu Fanglong, Cui Shizhong, Gu Bohong. Fractal analysis for effective thermal conductivity of random fibrous porous materials [J]. Physics Letters A, 2010, 374(43). 4411 -4414.
  • 5Kou Jianlong, Wu Fengmin, Lu Hangjun, et al. The effective thermal conductivity of porous media based on statistical self- similarity[J]. Physics Letters A, 2009, 374(1): 62-65.
  • 6Huai Xiulan, Wang Wciwei, Li Zhigang. Analysis of the effective thermal conductivity of fractal porous media [ J]. Applied Thermal Engineering, 2007, 27 ( 17 - 18 ) : 2815 - 2821.
  • 7Dathe A, Thullner M. The relationship between fractal properties of solid matrix and pore space in porous media[ J]. Genderma, 2005, 129(3-4): 279-290.
  • 8Perrier E, Bird N, Rieu M. Generalizing the fractal model of soil structure: the pore-solid fractal approach [ J]. Geoderma, 1999, 88(3 -4) : 137 - 164.
  • 9王康,张仁铎,王富庆.基于不完全分形理论的土壤水分特征曲线模型[J].水利学报,2004,35(5):1-6. 被引量:22
  • 10Wang Q A. Incomplete information and fractal phase space[ J]. Chaos, Solitons and Fractals, 2004, 19 (3) : 639 -644.

二级参考文献23

  • 1Campbell G S.A simple method for determining unsaturated hydraulic conductivity from moisture retention data [J].Soil Sci,1974,117:311-314.
  • 2Van Genuchten M T.A closed form equation for predicting the hydraulic conductivity of unsaturated soils [J].Soil Sci.Soc.Am.J.,1980,44:892-898.
  • 3Mandelbort B B.The fractal geometry of nature [M].W H Freeman,New York,1982.
  • 4Tyler S W,S W Wheatcraft.Fractal processes in soil water retention [J].Water Resour.Res.,1990,26:1047 -1054.
  • 5Perfect E,N B Mclaughlin,D Kay.An improved fractal equation for the soil water retention curve [J].Water Resour.Res.,1996,32:281-287.
  • 6Perfect E.Estimating soil mass fractal dimensions from water retention curves [J].Geodema.,1999,88:221 -231.
  • 7Perrier E,M Rieu,G Sposito.Models of the water retention curve for soils with a fractal pore size distributeon [J] Water Resour.Res.,1996,32:3025 - 3031.
  • 8Kravchenko A,R Zhang.Estimating the soil water retention from particle-size distributions:A fractal approach [J].Soil Sci.,1998,163:171 - 179.
  • 9Medina H,M Tarawally,A del Valle.Estimating soil water retention curve in rhodic ferralsols from basic soil data[J].Geoderma.2002,108:277-285.
  • 10Perfect E,M Diaz-Zotita,J H Grove.A prefractal model for predicting soil fragment mass-size distributeon [J].Soil Til.Res.2002,64:79-90.

共引文献23

同被引文献22

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部