期刊文献+

心电压缩感知恢复先验块稀疏贝叶斯学习算法 被引量:7

Priori-block sparse Bayesian learning algorithm for compressed sensing based ECG recovery
下载PDF
导出
摘要 压缩感知在低成本、低功耗、长时间的无线心电信号应用上具有优势。但现有重构算法中存在重构信号质量不理想、较大的计算量以及不能自适应噪声变化等问题。本文针对非稀疏心电信号快速精确压缩感知重构提出了先验块稀疏贝叶斯学习(P-BSBL)算法。算法在块稀疏贝叶斯学习基础上,根据心电信号先验引入了近似零解空间初值设置和数字特征迭代停止条件。为了验证算法效果,提出的方法在MIT-BIH心电数据库上进行了仿真实验。实验结果表明P-BSBL能够实现高效非稀疏心电信号高信号质量重构。P-BSBL在正常和非正常心电信号重构上都优于凸优化和贪婪方法;适用于高数据压缩比和噪声变化的心电信号重构。 Compressed sensing (CS)has advantages in low-cost,low-power and long term wireless electorcardiogram(ECG)applica-tions.However,there are some problems in existing reconstruction algorithms,which include the unsatisfied signal quality,huge compu-tation task and no-adaptive to noise.To accurately reconstruct the non-sparse ECG signal,a priori block sparse Bayesian learning (P-BSBL)algorithm is proposed in this paper.Based on the block sparse Bayesian learning,the P-BSBL introduces priori of ECG signals to enhance the performance of the algorithm,which adopts the “nearby”zero solution space as the initial values and the signal statistical characteristic as the stop condition.The numerical experiments on MIT-BIH ECG database were conducted to verify the algorithm.The results show that the proposed method can efficiently reconstruct the non-sparse ECG signal with high signal quality.The P-BSBL has better performance compared with the convex optimization and greed methods;and it is more suitable for the ECG signal reconstruction with high data compression ratio and variable signal-to-noise ratio.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第8期1883-1889,共7页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61240032) 江苏省自然科学基金(BK2012560) 江苏省研究生创新基金(CXZZ13_0089) 中央高校基本科研业务费资助项目
  • 相关文献

参考文献24

  • 1World Health Organization. Cardiovascular disease.[EB/OL]. Available : http://www. who. int/cardiovas-cular—diseases/en/index. html. 2013.
  • 2郑凯,赵宏伟,张孝临.基于ZigBee网络的心电监护系统的研究[J].仪器仪表学报,2008,29(9):1908-1911. 被引量:49
  • 3ALLSTOT E G,CHEN A Y, DIXON A M R,et al.Compressed sensing of ECG bio-signals using one-bitmeasurement matrices [ C ]. 2011 IEEE 9 th InternationalNew Circuits and Systems Conference (NEWCAS) , Bor-deaux, France, 2011 : 213-216.
  • 4DIXON AMR, ALLSTOT E G, GANGOPADHYAY D,et al. Compressed sensing system considerations for ECGand EMG wireless biosensors[ J]. IEEE Transactions onBiomedical Circuits and Systems, 2012,6(2) : 156-166.
  • 5CANDES E J,TAO T. Near-optimal signal recovery fromrandom projections : Universal encoding strategies [ J ].IEEE Transactions on Information Theory,2006, 52(12): 5406-5425.
  • 6JIAN J,YUANTAO G,SHUNLIANG M. A stochasticgradient approach on compressive sensing signal recon-struction based on adaptive filtering framework [ J ] ?IEEE Journal of Selected Topics in Signal Processing,2010,4(2) : 409-420.
  • 7MISHALI M,ELDAR Y C,DOUNAEVSKY 0,et al.Xampling : Analog to digital at sub-Nyquist rates [ J ].Circuits, Devices & Systems, IET,2011,5(1); 8-20.
  • 8余恺,李元实,王智,鲍明,蔡盛盛.基于压缩感知的新型声信号采集方法[J].仪器仪表学报,2012,33(1):105-112. 被引量:43
  • 9CANDES E J, WAKIN M B. An introduction to compres-sive sampling [ J ]. Signal Processing Magazine,IEEE,2008,25(2) : 21-30.
  • 10ZHANG Z,JUNG T, MAKEIG S, et al. Compressedsensing of EEG for wireless telemonitoring with low ener-gy consumption and inexpensive hardware [ J ]. IEEETransactions on Biomedical Engineering,2013,60(1):221-224.

二级参考文献21

  • 1顾瑞红,张宏科.基于ZigBee的无线网络技术及其应用[J].电子技术应用,2005,31(6):1-3. 被引量:148
  • 2郑霖,曾志民,万济萍,王建明.基于IEEE802.15.4标准的无线传感器网络[J].传感器技术,2005,24(7):86-88. 被引量:26
  • 3吴键,袁慎芳.无线传感器网络节点的设计和实现[J].仪器仪表学报,2006,27(9):1120-1124. 被引量:67
  • 4CANDES E. Compressive sampling[J]. Int. Congress of Mathematics ,2006, 3 : 1433-1452.
  • 5CANDI~S E J, ROMBERG J. Sparsity and incoherence in compressive sampling [ J ]. Inverse Problems, 2007, 23 (3) : 969-985.
  • 6CANDES E J, M WAKIN B, BOYD S P. Enhancing sparsity by reweighted L1 minimization [ J ]. The Journal of Fourier Analysis and Applications, Special Issue on Sparsity,2008,14(5 ) :877-905.
  • 7DONOHO D. Compressed sensing [ J ]. IEEE Trans. on Information, Theory,2006, 52(4) : 1289-1306.
  • 8AKAYA M A, TAROKH V. A frame construction and a universal distortion bound for sparse representations[ J].IEEE Trans. Sig. Proc ,2008,56:2443-2550.
  • 9BOUFOUNOS P, BARANIUK R, Quantization of sparse representations[ R]. Rice ECE Department Technical Re- port TREE 0701-Summary appears in Data Compression Conference (DCC) ,Snowbird, Utah,2007.
  • 10CANDES E J. The restricted isometry property and its im- plications for eompressed sensing [ J ]. C. R. Math. Aead. Sei. Paris, 2008,346(9-10):589-592.

共引文献90

同被引文献51

  • 1Farbod KHOSHNOUD,Christopher R.BOWEN,Cristinel MARES.Bistable Piezoelectric Flutter Energy Harvesting with Uncertainty[J].Instrumentation,2019,6(1):2-11. 被引量:2
  • 2LUO Kan, LI Jianqing, WU Jianfeng. A dynamic compres- sion scheme for Energy-Efficient Real-Time wireless electrok cardiogram biosensors [J]. 1EEE Trans Instrum Meas, 2014, 63(9) : 2160-2169.
  • 3CHEN Yiping, LI Liming, ZHANG Qiuli, et al. Use of drug treatment for secondary prevention of cardiovascular disease in urban and rural communities of China: China Kadoorie Biobank Study of 0.5 million people [J]. Int J Cardiol, 2014, 172(1) : 88-95.
  • 4雷礼琴,朱婉红.24小时动态心电图在不明原因晕厥患者临床诊断中的应用价值分析[J].实用心脑肺血管病杂志,2014,(6):113-114.
  • 5MAMAGHAN1AN H, KHALED N, AT1ENZA D, et al. Compressed sensing for real-time energy-efficient ECG corn pression on wireless body sensor nodes [J]. IEEE Trans Biomed Eng, 2011, 58(9): 2456-2466.
  • 6DILMAGHANI R S, BOBARSHAD H, GHAVAMI M, et al. Wireless sensor networks for monitoring physiological sig- nals of multiple patients [J]. IEEE Trans Biomed Circuits Syst, 2011, 5(4): 347-356.
  • 7PANTELOPOULOS A, BOURBAKIS N G. A survey on wearable sensor-based systems for health monitoring and prognosis [J]. IEEE Transactions on Systems Man and Cy- bernetics Part C-Applications and Reviews, 2010, 40 ( 1 ) : 1- 12.
  • 8LIN Chinteng, CHANG Kuaneheng, LIN Chunling, et al. An intelligent telecardiology system using a wearable and wireless ECG to detect atrial fibrillation [J]. IEEE Trans Inf Technol Biomed, 2010, 14(3) : 726-733.
  • 9NEMATI E, DEEN M J, MONDAL T. A wireless wearable ECG sensor for long-term applications [J]. IEEE Communi- cations Magazine, 2012, 50(1): 36-43.
  • 10AGRAWAL S, GUPTA A. Removal of baseline wander in ECG using the statistical properties of fractional Brownian motion [C]// 2013 IEEE International Conference on Elec- tronics, Computing and Communication Technologies (CONECCT). Bangalore: 2013: 1-6.

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部