期刊文献+

基于普通ER模型的多关系序列模式挖掘算法

Multi-relational Sequence Patten Mining Based on Normal ER Model
下载PDF
导出
摘要 在普通ER模型下,为了避免多表物理连接,本文提出了一种挖掘多关系序列模式的算法(MSPEM).该算法首先指定目标表及关键原子,建立相应的语义关系图,再根据语义关系图中的连接路径,传播元组标号.挖掘过程可分为单表挖掘和跨表挖掘,支持度的计算以关键原子为依据进行统计,最终得到基于虚拟连接表的多关系序列模式.MSPEM是一种ER模型下的基于元组传播的多关系序列模式挖掘方法,同时通过指定关键原子解决了基于虚拟连接表存在的统计偏斜问题.实验结果表明MSPEM算法具有更高的执行效率. In order to avoid physical link in normal ER model , this paper proposes a method for mining multi-relational sequence pattern( MSPEM ). In this Algorithm, the target table and the key element are firstly assigned, and the semantic relationship graph is established. , then tuple labels are propagated along with the connected paths in the graph. Mining process can be divided into single-table mining and cross-table mining, and the support is calculated based on key element, eventually multi-relational sequence patterns are obtained based on the virtual connection table. MSPEM is a way to mine multi-relational sequence sequence pattern in ER model based on tuple propagation, which can solve the statistics decline by assigning key element based on virtual table connection. Experimental result shows that MSPEM has higher efficiency.
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第9期2009-2013,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61070133 61003180)资助 江苏省教育厅自然科学基金项目(11KJD520011 12KJB520018)资助 江苏省"六大人才高峰"项目(2012-WLW-024)资助 江苏省产学研联合创新资金(前瞻性联合研究)项目(BY2013063-10)资助
关键词 数据挖掘 多关系序列模式 ER模型 元组传播 data mining multi-relational sequence pattern ER model tuple propagation
  • 相关文献

参考文献14

  • 1Agrawal R,Srikant R.Mining sequential pattern [C].Pro.of the 11 st Int.Conf.on Data Engineering,Taipei,March,1995:3-14.
  • 2Getoor L.Multi-relational data mining using probabilistic relational models:research summary [C].Proceedings of the First Workshop on Multi-relational Data Mining,2001:6-17.
  • 3Wrobel S.Inductive logic programming for knowledge discovery in databases [C].Relational Data Mining,2001:74-101.
  • 4何军,刘红岩,杜小勇.挖掘多关系关联规则[J].软件学报,2007,18(11):2752-2765. 被引量:38
  • 5Dehaspe L,de Raedt L.Mining association rules in multiple relations[C].Proc.of the 7th Int'l Workshop on Inductive Logic Programming,LNAI 1297,Berlin:Springer-Verlag,1997:125-132.
  • 6Dehape L.Frequent pattern discovery in first-order logic [D].Belgium:Katholieke Universiteit Leuven,1998.
  • 7Forzan C,Pandini D.Statistical static timing analysis:a survey [J].The VLSI Journal,2009,42(3):409-435.
  • 8Nijssen S,Kok J.Faster association rules for multiple relations [C].Proc.of the 17th Int'l Joint Conf.on Artificial Intelligence(DCAI 2001),2001,2:891-896.
  • 9Jensen V C,Soparkar N.Frequent itemset counting across multiple tables [C].Proc.of the 4th Pacific-Asia Conf.of Knowledge Discovery and Data Mining,Current Issues and New Applications.LNCS 1805,Berlin:Springer-Verlag,2000:49-61.
  • 10Ng E K K,Fu A W,Wang K.Mining association rules from stars [C].Proc.of the 2002 IEEE Int'l Conf.on Data Mining(ICDM 2002),Los Alamitos:IEEE Computer Society,2002:322-329.

二级参考文献1

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部