期刊文献+

非确定性环境中移动机器人实时避障的概率模型检测 被引量:5

Probabilistic Model Checking for Real-time Obstacle Avoidance of Mobile Robot in a Non-deterministic Environment
下载PDF
导出
摘要 移动机器人的避障问题是机器人学的重要问题,实时避障是移动机器人安全导航的关键.针对移动机器人存在的制动机误差和传感器噪声等不确定因素,采用概率模型检测的方法对实时避障控制策略进行验证和定量分析.首先,将目标机器人的避障运动及动态障碍物的非确定运动建模为马尔科夫决策过程,其中避障策略包括等待避障、减速避障和加速避障.然后,运用概率计算树逻辑语言描述目标机器人运动的关键属性并使用概率模型检测工具进行验证.最后,分析得到目标机器人与动态障碍物发生碰撞的最大概率值;目标机器人采取减速(加速)避障时,减速(加速)行驶的最佳时间;目标机器人的控制误差对避障运动的影响等.实验结果表明某些参数影响目标机器人的避障效果,并为参数值的选择提供参考依据. Mobile robot obstacle avoidance is an important problem in robots and the real-time obstacle avoidance is the key for robots to navigate reliably. For the actuator errors, sensor noise and other uncertainties of the mobile robot, this paper adopts the method of probabilistic model checking to verify and quantify its real-time obstacle avoidance strategies. First, the target robot obstacle avoidance motion and some dynamic obstacles uncertain movements in the experimental environment are modeled as a Markov decision process, where the obstacle avoidance strategies include waiting avoidance, deceleration avoidance and acceleration avoidance. Then, use the language of probabilistic computation tree logic to describe motion properties and use the probabilistic model checking tool to verify them. Finally, analyze and obtain the maximum probability of occurring collision between the target robot and obstacles, the best time to decelerate (accelerate)when the target robot uses the deceleration ( acceleration ) method to avoid obstacles, some influences on obstacle avoidance by control errors and so on. Experimental results show that some parameters of the target robot affect the obstacle avoidance effects and provide reference value to choose the values of these parameters.
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第9期2104-2109,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61373034 61303014)资助 国际科技合作计划项目(2011DFG13000)资助 北京市自然科学基金项目(4122017)资助 北京市教委科研基地建设项目(TJSHG201310028014)资助
关键词 移动机器人 控制误差 实时避障 概率模型检测 马尔科夫决策过程 mobile robot control errors real-time obstacle avoidance probabilistic model checking Markov decision process
  • 相关文献

参考文献6

二级参考文献84

  • 1洪伟,田彦涛,董再励,王光辉.移动机器人的障碍物群检测方法[J].吉林大学学报(信息科学版),2002,20(1):67-72. 被引量:1
  • 2朱庆保.动态复杂环境下的机器人路径规划蚂蚁预测算法[J].计算机学报,2005,28(11):1898-1906. 被引量:50
  • 3宋彩云,王明磊,刘肖琳.基于环境模型的移动机器人路径规划[J].电光与控制,2006,13(3):102-104. 被引量:4
  • 4岳富占,崔平远,崔祜涛.基于改进蚁群算法的星球探测机器人路径规划技术[J].控制与决策,2006,21(12):1437-1440. 被引量:12
  • 5Spaan M T J, Vlassis N. Perseus: Randomized point-based value iteration for POMDPs[J]. Journal of Artificial Intelligence Research, 2005, 24: 195-220.
  • 6Osentoski S, Manfredi V, Mahadevan S. Learning hierarchical models of activity[C]//IEEE/RSJ Intemational Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2004: 891-896.
  • 7Bennewitz M, Burgard W, Thrun S. Using EM to learn motion behaviors of persons with mobile robots[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2002: 502-507.
  • 8Miura J, Shirai Y. Modeling motion uncertainty of moving obstacles for robot motion planning[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2000: 2258-2263.
  • 9Hoeller F, Schulz D, Moors M, et al. Accompanying persons with a mobile robot using motion prediction and probabilistic roadmaps[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2007: 1260-1265.
  • 10Lin L, Fox D, Hightower J, et al. Voronoi tracking: Location estimation using sparse and noisy sensor data[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2003: 723-728.

共引文献96

同被引文献37

引证文献5

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部