期刊文献+

一种非对称结构微流体混合器的设计与分析 被引量:4

Design and Analysis of an Asymmetric Structured Microfluidic Mixer
下载PDF
导出
摘要 微流体混合器可以用于不同流体之间的混合与反应,其与化学传感器结合构成的化学分析测试系统,具有灵敏度高、响应时间短和稳定性好的特点。在微电子机械加工技术的基础上,设计了一种新型的、具有非对称分离重组结构的微流体混合器,并应用有限元方法建立了仿真模型,讨论了在不同雷诺数(Re=10~80)下,通道几何结构参数对微混合器内的流体流动特性和混合效率的影响。研究结果表明,微流体在该混合器内形成了扩展涡、分离涡和迪恩(Dean)涡,实现了涡系的叠加和强化,加大了流体间的扰动,增加了流体的接触面积,从而大大增强了混合效率。 Microfluidic mixer can be used for mixing and reaction between different fluids. The chemical analysis test system consisted of the microfluidic mixer and chemical sensor has the fea- tures of high sensitivity, short response time and a good stability. Based on the microelectronic mechanical technology, a novel microfluidic mixer with the asymmetric split and recombine structure was designed, and the simulate model was built using the finite element method. The effects for the geometry parameters of the micro-channel on the fluidic behavior and mixing index were discussed under different Reynolds numbers (Re = 10 - 80). The study results indicate that the expansion vortex, separated vortex and Dean vortex are formed in the designed micromixer, the combination and enhancement of the vortex systems are achieved, the disturbance between fluids and the contact area of the fluids increase, then the mixing index significantly is enhanced.
出处 《微纳电子技术》 CAS 北大核心 2014年第8期512-517,共6页 Micronanoelectronic Technology
基金 国家自然科学基金资助项目(61372028)
关键词 微流体混合器 非对称分离重组 雷诺数 有限元方法 混合效率 microfluidic mixer asymmetric split and recombine Reynolds number finite element method mixing index
  • 相关文献

参考文献12

  • 1ABE K,SUZUKI K,CITTERIO D.Inkjet-printed microfluidic multianalyte chemicalsensing paper[J].Analytical Chemistry,2008,80(18):6928-6934.
  • 2KAMHOLZ A E,WEIGLB H,FINLAYSONB A,et al.Quantitative analysis of molecular interaction in a microfluidic channel:the T-sensor[J].Analytical Chemistry,1999,71(23):5340-5347.
  • 3HINSMANN P,FRANK J,SVASEK P,et al.Design,simulation and application of a new micromixing device for time resolved infrared spectroscopy of chemical reactions in solution[J].Lab on a Chip,2001,1(1):16-21.
  • 4STROOCK A D,DERTINGER S K W,AJDARI A,et al.Chaotic mixer for microchannels[J].Science,2002,295(5555):647-651.
  • 5HARDT S,DRESE K S,HESSEL F,et al.Passive micromixer for applications in the microreactor andμTAS fields[J].Microfluidics and Nanofluidics,2005,1(2):108-118.
  • 6FENG X S,REN Y K,JIANG H Y.An effective splittingand-recombination micromixer with self-rotated contact surface for wide Reynolds number range applications[J].Biomicrofluidics,2014,7(5):054121-1-054121-10.
  • 7FODORA P S,ITOMLENSKIS M,KAUFMAN M.Assessment of mixing in passive microchannels with fractal surface patterning[J].The European Physical Journal Applied Physics,2009,47(3):31301-1-31301-9.
  • 8HESSEL V,LWE H,SCHNFELD F.Micromixers—a review on passive and active mixing principles[J].Chemical Engineering Science,2005,60(8/9):2479-2501.
  • 9AFZAL A,KIM K Y.Passive split and recombination micromixer with convergent-divergent walls[J].Chemical Engineering Journal,2012,203(9):182-192.
  • 10BESSOTH F G,DEMELLO A J,MANZ A.Microstructure for efficient continuous flow mixing[J].Anal Commun,1999,36(6):213-215.

同被引文献35

  • 1孙长敬,褚家如.新型压电驱动微流体混合器实验[J].纳米技术与精密工程,2006,4(2):132-135. 被引量:5
  • 2苗圃,张平,吴一辉.基于PDMS的静态微流体混合器的制作与仿真[J].半导体光电,2007,28(4):536-539. 被引量:1
  • 3杨敬松,左春柽,连静,崔广才.基于数字微流控生物芯片的液滴调度算法[J].吉林大学学报(工学版),2007,37(6):1380-1385. 被引量:6
  • 4LIU K, ZHANG W P, CHEN W Y, et al. The development of micro-gyroscope technology [J]. Journal of Micromechanics and Microengineering, 2009, 19 (11): 113001-1- 113001-29.
  • 5HOSSAIN S, ANSARI M A, KIM K Y. Evaluation of the mixing performance of three passive micromixers [J]. Chemi- cal Engineering Journal, 2009, 150 (2/3) 492 - 501.
  • 6STROOCK A D, DERTINGER S K W, AJDARI A, et al. Chaotic mixer for microehannels [J]. Science, 2002, 295 (5555) : 647 - 651.
  • 7KEE S P, GAVRIILIDIS A. Design and characterisation of the staggered herringbone mixer [J]. Chemical Engineering Journal, 2008, 142 (1): 109-121.
  • 8NGUYEN N T, WU Z G. Micromlxers--a review [J]. Journal of Micromechanics and Microengineerin, 2005, 15 (2) R1 - R16.
  • 9ISMAGILOV R F, STROOCK A D, KENIS P J A, et al. Ex- perimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels [J]. Applied Physics Letters, 2000, 76 (17) 2376 - 2378.
  • 10KAMHOLZ A E, WEIGL B H, FINLAYSON B A, et al. Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor [J]. Analytical Chemistry, 1999, 7l (23) 5340 - 5347.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部