期刊文献+

GaAs/Si直接键合用GaAs表面化学活化技术 被引量:1

GaAs Surface Chemical Activation Technology for GaAs/Si Direct Bonding
下载PDF
导出
摘要 研究了GaAs/Si疏水性直接键合技术中GaAs表面化学活化关键工艺,对比分析了不同体积分数的HF和HCl溶液作为表面活性处理剂时对GaAs表面进行活化处理的结果。发现用HCl和H2O溶液处理GaAs晶片得到的表面均方根粗糙度要优于用HF处理得到的结果,并且将处理过的GaAs晶片与Si片进行直接键合,发现用HCl进行表面活化的GaAs晶片与Si片键合的成功率要高于用HF进行表面活化的GaAs和Si键合。在200,300和400℃条件下,采用HCl和H2O体积比为1∶10的溶液处理的GaAs晶片与Si片都成功键合,并且200℃条件下键合后的界面质量较好。 The surface chemical activation key technology of GaAs in hydrophobic GaAs/Si direct bonding was studied. The active treatment results of GaAs surfaces were compared and analyzed using surface active treatment agents of HF and HCl with different volume fractions. Then the processed GaAs wafer was bonded with the Si wafer. It is found that the root mean square roughness of GaAs wafer treated with the HCl and H2O solution is better than that with HF solution, and the bonding success rate of GaAs wafer activated with HCI and Si wafer is higher than that of GaAs wafer activated with HF and Si wafer. Under the temperatures of 200, 300 and 400 ℃, the GaAs and Si wafers can be directly bonded by the HCl and H20 solution with the volume propor- tion of 1 : 10, and the performance of the bonded interface is better at 200 ℃.
出处 《微纳电子技术》 CAS 北大核心 2014年第8期523-528,541,共7页 Micronanoelectronic Technology
基金 国家重点基础研究发展计划(973计划)资助项目(2012CB934204) 国家自然科学基金资助项目(61076077 61274066)
关键词 疏水性 直接键合 清洗工艺 原子力显微镜 表面均方根粗糙度 hydrophobic direct bonding cleaning process atomic force microscopy (AFM) surface root mean square (RMS) roughness
  • 相关文献

参考文献19

  • 1MORICEAU H,RIEUTORD F,FOURNEL F,et al.Low temperature direct bonding:an attractive technique for heterostructures build-up[J].Microelectronics Reliability,2012,52(2):331-341.
  • 2LIU N,KUECH T F.Interfacial chemistry of InP/GaAs bonded pairs[J].Journal of Electronic Materials,2007,36(3):179-190.
  • 3YANG T S,WANG X D,LIU W,et al.Double-layer antireflection coating containing a nanoporous anodic aluminum oxide layer for GaAs solar cells[J].Optics Express,2013,21(15):18207-18215.
  • 4SHI Y P,WANG X D,LIU W,et al.Multilayer silver nanoparticles for light trapping in thin film solar cells[J].Journal of Applied Physics,2013,113(17):176101-1-176101-3.
  • 5ESSIG S,MOUTANABBIR O,WEKKELI A,et al.Fast atom beam-activated n-Si/n-GaAs wafer bonding with high interfacial transparency and electrical conductivity[J].Journal of Applied Physics,2013,113(20):203512-1-203512-6.
  • 6LIU N,KUECH T F.Changes in interfacial bonding energies in the chemical activation of GaAs surfaces[J].Journal of Electronic Materials,2005,34(7):1010-1015.
  • 7晏磊,于丽娟.Ⅲ-Ⅴ族材料制备多结太阳电池的研究进展[J].微纳电子技术,2010,47(6):330-335. 被引量:4
  • 8TANABE K,WATANABE K,ARAKAWA Y.Ⅲ-Ⅴ/Si hybrid photonic devices by direct fusion bonding[J].Scientific Reports,2012,2:1-5.
  • 9ZHOU Y C,ZHU Z H,CROUSE D,et al.Electrical properties of wafer-bonded GaAs/Si heterojunctions[J].Applied Physics Letters,1998,73(16):2337-2339.
  • 10TANABE K,FONTCUBERTA i MORRAL A,ATWATER H A,et al.Direct-bonded GaAs/InGaAs tandem solar cell[J].Applied Physics Letters,2006,89(10):102106-1-102106-3.

二级参考文献26

  • 1KING R R,LAW D C,EDMONDSON K M,et al.40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells[J].Applied Physics Letters,2007,90(18):183516-1-183516-3.
  • 2GUTER W,SCHONEJ,PHILIPPS S P,et al.Current-matched triple-iunction solar cell reaching 41.1% conversion efficiency under concentrated sunlight[J].Applied Physics Letters,2009,94(22):223504-1-223504-3.
  • 3WOLF M Limitations and possibilities for improvement of photo-voltaic solar energy converters:Part I:Considerations for earth's surface operation[J].Proceedings of the IRE,1960,48(7):1246-1263.
  • 4SHOCKLEY W,QUEISSER H J.Detailed balance limit of efficiency of p-n junction solar cells[J].Journal of Applied Physics,1966,32(3):510-519.
  • 5MARTI A,ARAUJO G L.Limiting efficiencies for photo-voltaic energy conversion in multigap systems[J].Solar Energy Materials and Solar Cells,1996,43(2):203-222.
  • 6PTAK A J,FRIEDMAN D J,KURTZ S,et al.Low-accep-tor-concentration GaInNAs grown by molecular-beam epitaxy for high-current p-i-n solar cell applications[J].Journal of Applied Physics,2005,98(9):094501-1-094501-5.
  • 7KURTZ S R,KLEM J F,ALLERMAN A A,et al.Minority carrier diffusion and defects in InGaAsN grown by molecular beam epitaxy[J].Applied Physics Letters,2002,80(8):1379-1381.
  • 8GEISZ J F,KURTZ S,WANLASS M W,et al.High-efficiency GaInP/GaAs/InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction[J].Ap-plied Physics Letters,2007,91(2):023502-1-023502-3.
  • 9KONDOW M,KITATANI T,NAKATSUKA S,et al.GaInNAs:a novel material for long-wavelength semiconduc-tor lasers[J].IEEE Journal of Selected Topics in Quantum Electronics,1997,3(3):719-730.
  • 10KURTZ S R,MYERS D,OLSON J M.Projected perfor-mance of three-and four-junction devices using GaAs and GaInP[C]//Proceedings of 26th IEEE Photovohaic Specia-lists Conference.Anaheim,California,USA,1997:875-878.

共引文献3

同被引文献46

  • 1Maiman T H.Stimulated Optical Radiation in Ruby[J].Nature,1960,187(4736):493-494.
  • 2Maiman T H.Optical and Microwave-Optical Experiments in Ruby[J].Physical review letters,1960,4(11):564.
  • 3Geusic J E,Marcos H M,Van Uitert L G.Laser Oscillations in Nd-Doped Yttrium Aluminium,Yttrium Gallium and Yttrium Gadolinium Garnets[J].Applied Physics Letters,1964,4(10):182-184.
  • 4Ledig M,Heumann E,Ehrt D,et al.Spectroscopic and Laser Properties of Cr3+∶Yb3+∶Er3+:Fluoride Phosphate Glass[J].Optical and Quantum Electronics,1990,22(1):S107-S122.
  • 5Taira T,Ikesue A,Yoshida K.Diode-Pumped Nd∶YAG Ceramics Lasers[C].Advanced Solid State Lasers.Optical Society of America,1998:CS4.
  • 6Jian W X,Yong Z Z,Guo Q Z,et al.Growth of Large-Sized Sapphire Boules by Temperature Gradient Technique(TGT)[J].Journal of Crystal Growth,1998,193(1):123-126.
  • 7Ikesue A,Yan L A.Ceramic Laser Materials[J].Nature Photonics,2008,2(12):721-727.
  • 8Lu J,Yagi H,Takaichi K,et al.110 W Ceramic Nd3+∶Y3Al5O12Laser[J].Applied Physics B,2004,79(1):25-28.
  • 9Chen J,Li J,Xu J,et al.4350 W Quasi-Continuous-Wave Operation of A Diode Face-Pumped Ceramic Nd∶YAG Slablaser[J].Optics&Laser Technology,2014,63(4):50-53.
  • 10Yagi H,Takaichi K,Ueda K,et al.The Physical Properties of Composite YAG Ceramics[J].Laser Physics Lawrence,2005,15(9):1338.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部