期刊文献+

整合型酿酒酵母菌株强化发酵和特性比较

Improvement and Characterization Recombinant Saccharomyces cerevisiae with Integrated Xylose Isomerase for Enhanced Ethanol Production
下载PDF
导出
摘要 为了提高木糖异构酶基因在重组酿酒酵母体内的稳定性,并比较不同真菌来源的木糖异构酶在木糖或者葡萄糖-木糖培养基的发酵利用特性,分别构建来自Piromyces sp.E2和Orpinomyces sp.的木糖异构酶基因的整合表达载体,利用同源重组将其整合进入呼吸缺陷型菌株的18S rDNA非转录区,结果测得Orpinomyces的木糖异构酶酶活活力为0.72 U/mg,比Piromyces的木糖异构酶酶活高2.8倍。在木糖培养基中发酵获得乙醇的得率分别为0.40 g/g和0.48 g/g。且整合入Orpinomyces的木糖异构酶基因菌株能获得最高酶活和乙醇得率。 To improve the stability of xylose isomerase (X1) gene in recombinant Saccharomyces cerevisiae and compare with the characteristics of xylose utilization of different gene from different sources, the S. cerevisiae strains, without respiratory-deficiency, were integrated with the XI genes from Piromyces sp. E2 and Orpinomyces sp. individually. The results showed that the ethanol yield of strain harbouring Piromyces sp. E2 or Orpinomyces XI gene was 0.40 or 0.48 g/g of consumed xylosc in media supplemented with 2 % (w/v) xylose. Specific enzyme activity of Orpinomyces XI was 0.72 U/mg that was 2.8-tbld higher than Piromyces Xl's. The highest ethanol yield and enzymatic activity were both obtained in the respiratory-deficient strain with integrated Oripinomyces sp. XI gene.
出处 《广东化工》 CAS 2014年第15期19-22,共4页 Guangdong Chemical Industry
基金 A*STAR 新加坡(0921390035)
关键词 酿酒酵母 木糖异构酶 整合 18S RDNA 乙醇 S. c'erevisiae: xylose isomerase integration 18S rDNA ethanol
  • 相关文献

参考文献13

  • 1廖礼斌.利用联合生物工艺生产燃料乙醇的研究进展[J].广州化工,2009,37(3):66-68. 被引量:1
  • 2Ha S J,Galazka J M,Oh E J,et al.Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters.Metab Eng,2013,15:134-143.
  • 3Eliasson A,Christensson C,Wahlbom C F,et al.Anaerobic Xylose Fermentation by Recombinant Saccharomyces cerevisiae Carrying XYL1,XYL2 and XKS1 in Mineral Medium Chemostat Cultures.Appl EnviroMicrobiol,2000,66(8):3381-3386.
  • 4Kuyper,M,Harhangi HR,Stave AK,et al.High-level functional expression of a fungal xylose isomerase:the key to efficient ethanolic fermentation of xylosebySaccharomycescerevisiae?FEMSYeastRes,2003,4:69-78.
  • 5Johansson B,Hahn-H(a)gerdal B.The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomycescerevisiae.FEMSYeast,2002,2:277-282.
  • 6Tr(a)ffKL,Otero Cordero RR,van Zyl WH,et al.Deletion of the GRE3 Aldose Reductase gene and its Influence on Xylose metabolism in Recombinant Strains of Saccharomyces cerevisiae expressing xylA and XKS 1 genes.ApplEnvironMicrobiol.2001,67(12):5668-5674.
  • 7Zhou H,Cheng JS,Wang BL,et al.Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae.Metab Eng,2012,14:611-522.
  • 8K(o)tter P,Ciriacy M.Xylose fermentation by Saccharomyces cerevisiae.ApplMicrobion Biotechnol.1993,38:776-783.
  • 9Geng AL,Peng BY.Xylose isomerase genes for xylose-fermenting yeast construction.Singapore,201309282-0.2013.
  • 10Güldener U,Heck S,Fielder T,et al.A new efficient gene disruption cassette for repeated use in budding yeast.Nucleic Acids Res,1996,24(13):2519-2524.

二级参考文献19

  • 1曲音波,高培基.造纸厂废物发酵生产纤维素酶、酒精和酵母综合工艺的研究进展[J].食品与发酵工业,1993,19(3):62-65. 被引量:34
  • 2Delucchi MA: Emissions of greenhouse gases from the use of transportation fuels and electricity. Vol. 1. Argonne National Laboratory, Argonne, IL; 1991.
  • 3Greer D: Creating cellulosic ethanol. Spinning straw into fuel. Biocycle 2005, 46:61-65.
  • 4Ingram LO, Aldrich HC, Borges ACC, Cansey TB, Martinez A, Morales F, Saleh A, Underwood SA, Yomano LP, York SW et al.: Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 1999, 15:855-866.
  • 5Jennert KCB, Tardiff C, Young DI, Young M: Gene transfer to Clostridium cellulolyticum ATCC 35319. Microbio12000, 146:3071-3080.
  • 6Tyurin M, Desai SG, Lynd LR: Electrotransformation of Clostridium thermocellum. Appl Environ Microbiol 2004, 70:883-890.
  • 7Klapatch TR, Guerinot ML, Lynd LR: Electrotransformation of Clostridium thermosaccharolyticum. J Ind Microbiol 1996, 16:342-347.
  • 8Mai V, Lorenz WW, Wiegel J: Transformation of Thermanaerobacterium sp. strain JW/SL-YS485 with plasmid plKM1 conferring kanamycin resistance. FEMS Microbiol Lett 1997, 148:163-167.
  • 9Guedon E, Desvaux M, Petitdemange H: Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl Environ Microbio12002, 68:53-58.
  • 10Strobe/HP, Lynn B: Proteomic analysis of ethanol sensitivitiy in Clostridium thermocellum. In Proceeding of the National Meeting of the American Society of Microbiology May 23-27th 2004. New Orleans, LA. Abstract number 0-094.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部