期刊文献+

一种基于边缘度密度距的聚类算法 被引量:6

Cluster Algorithm Based on Edge Density Distance
下载PDF
导出
摘要 传统网格聚类算法聚类质量低,而密度聚类算法时间复杂度高。针对两类算法各自的缺点,结合它们的聚类思想提出了一种新的聚类算法。该算法提出了边缘度密度距作为新的密度度量,并在此基础上逐步确定了类的定义和聚类过程的定义。算法前期通过网格划分操作统计记录了待聚类数据的初始信息,以供随后的k近邻统计使用。在寻找聚类中心点时使用了桶排序的策略,使得算法能快速地选出下一个聚类中心点。随后的聚类步骤是迭代搜索并检验当前类中未检验的k近邻是否满足密度可达性来完成聚类。理论分析和实验测试的结果表明,该算法不仅保持了较高的聚类精度,而且有接近线性的低时间复杂度。 Clustering algorithms based on grid have a drawback of low clustering precision, and most clustering algo- rithms based on density have high time complexity. In order to improve clustering performance, a cluster algorithm based on edge density distance was proposed in this paper. The new cluster algorithm makes new definitions of density and category. In the clustering process, data are divided into grids and some initial information is recorded firstly for the operation of finding k near points. Then in the process of finding a new clustering center, a method come from bucket sort is used,which makes it fast to find the clustering center. A subsequent procedure is to iteratively analyse k near points of one category to judge whether they are density accessible. Analysis in theory and result of experiments show that the proposed algorithm has both high quality in clustering result and low time complexity.
出处 《计算机科学》 CSCD 北大核心 2014年第8期245-249,共5页 Computer Science
基金 浙江省重点科技创新团队项目(2010R50009)资助
关键词 聚类 网格 密度 Caed DBSCAN Kmeans Cluster, Grid, Density, Caed, Dbscan, Kmeans
  • 相关文献

参考文献14

  • 1Escudero L F,Garín M A,Pérez G,et al.Scenario Cluster Decomposition of the Lagrangian dual in two stage stochastic mixed 0 1 optimization[J].Computers & Operations Research,2013,1(40):362-377.
  • 2Wang W,Yang J,Muntz R.STING:A statistical information grid approach to spatial data mining[C]// Proc.of the 23rd Very Large Databases Conf.(VLDB 1997).Athens,Greece.1997:186-195.
  • 3Rakai L,Farshidi A,Behjat L,et al.A New Length Based Algebraic Multigrid Clustering Algorithm[J].VLSI Design,2012,2012.
  • 4Demirtas E A.A Data Envelopment Based Clustering Approach for Public Sugar Factories in Privatizing Process[J].Mathematical Problems in Engineering,2011,2011.
  • 5Xu X W,Ester M,Kriegel H P,et al.A distribution based clustering algorithm for mining in large spatial databases[C]// Proc.14th Intemat.Conf.on Data Eng.(ICDE 98).Orlando,FL,1998:324-331.
  • 6Zhong YF,Zhang LP.A New Fuzzy Clustering algorithm Based on Clonal S election for Land Cover Classlfication[J].Mathematical Problems in Engineering,2011,2011.
  • 7Elbatta M T,Bolbol R M,Ashour W M.A Vibration Method for Discovering Density Varied Clusters[J].ISRN Artificial Intelligence,2012,2012.
  • 8Karypis G,Han E H,Kumar V.CHAMELEON:A hierarchical clustering algorithm using dynamic modeling[J].IEEE Computer,1999,32(8):68-75.
  • 9孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1077
  • 10赵慧,刘希玉,崔海青.网格聚类算法[J].计算机技术与发展,2010,20(9):83-85. 被引量:29

二级参考文献23

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2单世民,邓贵仕,何英昊.一种基于网格和密度的微粒群混合聚类算法[J].计算机科学,2006,33(11):164-165. 被引量:3
  • 3刘敏娟,柴玉梅,张西芝.基于相似度的网格聚类算法[J].计算机工程与应用,2007,43(7):198-201. 被引量:12
  • 4孙玉芬,卢炎生.一种基于网格方法的高维数据流子空间聚类算法[J].计算机科学,2007,34(4):199-203. 被引量:8
  • 5韩家炜.数据挖掘--概念与技术[M].范明,孟小峰,译.北京:机械工业出版社,2001.
  • 6Jain A K,Murty M N,Flynn P J.Data Clustering:A Review[J].ACM Computing Surveys,1999,31(3):264-323.
  • 7曾蒙福.基于自适应网格的聚类算法及在信息提取中的应用研究[D].福州:福州大学,2005.
  • 8Wang W,Yang J,Muntz R.STING:A Statistical Information Grid Approach to Spatial Data Mining[C]∥In:Proceedings of the 23rd VLDB Conference.Athens,Greece:[s.n.],1997:186-195.
  • 9Sheikholeslami G,Chatterjee S,Zhang A.WaveCluster:A Multi-Resolution Clustering Approach for Very Large Spatial Databases[C]∥In:Proceedings of the 24th VLDB Conference.New York,USA:[s.n.],1998:428-439.
  • 10Agrawal R,Gehrke J,Gunopulos D,et al.Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications[C]∥In:Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data.[s.l.]:[s.n.],1998:94-105.

共引文献1101

同被引文献55

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部