期刊文献+

基于空间约束低秩图的人脸识别 被引量:1

Low-rank Graph with Spatial Constraint for Face Recognition
下载PDF
导出
摘要 低秩表示能够很好地揭示隐藏在数据中的全局结构信息并且对噪声具有很强的鲁棒性。基于图嵌入维数约简理论框架,提出了一种人脸识别算法,其利用低秩表示模型构建数据低秩图。此外,在低秩模型中引入数据空间约束项,构建一种具有空间约束的低秩图以提高识别效果。在ORL和PIE标准人脸数据库上进行实验,同传统的识别算法相比,结果显示所提出的算法在识别率和对噪声的鲁棒性上具有更好的表现。 The low-rank representation (LLR) model can reveal the subtle data structure information and show a strong robustness when dealing with noises. Based on the framework for graph embedding dimensionality reduction method, we proposed a face recognition algorithm which establishes low-rank graph using low-rank representation model. In addi- tion, we constructed a novel low-rank graph with spatial constraint by using spatial information of the tracked points to improve recognition performance. To demonstrate the effectiveness of the presented algorithm, our comparative experi- ments were conducted using ORL and PIE face image databases. Experimetal results show that the effectiveness and ro- bustness to noises are always better than other state-of-the-art methods.
出处 《计算机科学》 CSCD 北大核心 2014年第8期297-300,326,共5页 Computer Science
基金 国家自然科学基金项目(51365017 61305019) 江西省科技厅青年科学基金(20132bab211032)资助
关键词 低秩表示 空间约束项 低秩图 人脸识别 Low-rank representatiom Spatial constraints Low-rank graph Face recognition
  • 相关文献

参考文献17

  • 1Belkin M,Niyogi P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15(6):1373-1396.
  • 2Niyogi X.Locality preserving projections[C]//Neural Information Processing Systems.2004,16:153.
  • 3He X,Cai D,Yan S,et al.Neighborhood preserving embedding[C]//Tenth IEEE International Conference on Computer Vision,2005 (ICCV 2005).IEEE,2005,2:1208-1213.
  • 4Wright J,Yang A Y,Ganesh A,et al.Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
  • 5杨荣根,任明武,杨静宇.基于稀疏表示的人脸识别方法[J].计算机科学,2010,37(9):267-269. 被引量:50
  • 6Candès E J,Li X,Ma Y,et al.Robust principal component analysis?[J].Journal of the ACM (JACM),2011,58(3):11.
  • 7Liu G,Lin Z,Yu Y.Robust subspace segmentation by low rank representation[C]//Proceedings of the 27th International Conference on Machine Learning (ICML 10).2010:663-670.
  • 8Zhuang L,Gao H,Lin Z,et al.Non negative low rank and sparse graph for semi supervised learning[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2012:2328-2335.
  • 9Zhuang L,Gao H,et al.Semi supervised classification via low rank graph[C]//2011 Sixth International Conference on Image and Graphics (ICIG).IEEE,2011:511-516.
  • 10Yang S,Wang X,Wang M,et al.Semi-supervised low rank representation graph for pattern recognition[J].IET Image Processing,2013,7 (2):131-136.

二级参考文献13

  • 1Cande E.Compressive Sampling[C] ∥Proc.Int'l Congress ofMathematicians.2006.
  • 2Marcellin M W,Gormish M J,Bilgin A,et al.,An overview of JPEG-2000[C] ∥Proc.Data Compression Conf.2000:523-541.
  • 3Starck J L,Candes E J,Donoho D L.The curvelet transform for image denoising[J].IEEE Trans.Image Process.,2002,11:670-684.
  • 4Gastaud R,Starck J L.Dynamic range compression:A newmethod based on wavelet transform[C] ∥Astron.Data Anal.Software Systems Conf.Strasbourg,2003.
  • 5Starck J L,Elad M,Donoho D L.Image decomposition:Separation of texture from piece-wise smooth content[C] ∥SPIE Conf.Signal Image Process.Wavelet Applicat.Signal Image Process.2003.
  • 6Wright J,Yang Y,Ganesh A,et al.Robust face recognition via sparse representation[J].pattern analysis and machine intelligence,2009,31(2):210-227.
  • 7Chen S,Donoho D,Saunders M.Atomic Decomposition by Basis Pursuit[J].SIAM Review,2001,43(1):129-159.
  • 8Elad M,Aharon M.Image denoising via sparse and redundantrepresentations over learned dictionaries[J].IEEE Transactions on Image Processing,2006,15(12):3736-3745.
  • 9Protter M,Elad M.Image Sequence Denoising via Sparse andRedundant Representations[J].IEEE Transactions on Image Processing,2008,18:27-35.
  • 10Bryt O,Elad M.Compression of Facial Images Using the K-SVD Algorithm[J].Journal of Visual Communication and Image Re-presentation,2008,19(4):270-283.

共引文献49

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部