期刊文献+

规模化灌溉管网非恒定流模拟研究 被引量:4

Unsteady Water Flow Simulation for Large Scale Irrigation Network
下载PDF
导出
摘要 针对环状和树状2种常用的管网形式,构建了恒定流数学表达式及数值模拟模型,并借助基本遗传算法提高了模拟结果的收敛性。在此基础上,借助Saint-Venant方程,以恒定流为非恒定流的初始与边界条件,构建了管网非恒定流数值模拟模型。针对实际典型境况,从数值稳定性、数值收敛性和质量守恒性3个角度,系统分析了构建的灌溉管网恒定与非恒定流数值模拟模型的模拟效果。结果表明,该模型可为规模化灌溉管网的管理评价和优化设计提供可靠的数值分析工具。 Mathematical expression and numerical model were constructed for steady water flow of irrigation network. Meanwhile, the genetic algorithm was introduced to improve the convergence of the simulation results. Then, the steady water flow was used as the initial and boundary conditions, and the unsteady water flow model was proposed for large scale network based on the Saint-Venant equation. The simulation performance of the proposed model was verified from three aspects, such as numerical stability, convergence and mass conservation. The results showed that the proposed model could provide an available numerical tool for the evaluation of the unsteady water flow in large scale irrigation network.
出处 《灌溉排水学报》 CSCD 北大核心 2014年第4期325-330,共6页 Journal of Irrigation and Drainage
基金 国家科技支撑计划课题(2012BAD08B01) 水利部公益性行业科研专项(201201001 201301011)
关键词 管网 规模化 环状 树状 非恒定流 network large scale ring tree unsteady
  • 相关文献

参考文献8

  • 1付玉娟,蔡焕杰.灌溉管网优化研究现状与展望[J].西北农林科技大学学报(自然科学版),2005,33(11):137-140. 被引量:13
  • 2Estrada C, Gonzdlez C, Aliod R, Patio J. Improved Pressurized Pipe Network Hydraulic Solver for Applications in Irrigation Systems[J]. Journal of Irrigation and Drainage Engineering-ASCE, 2009, 135(4) :421 -430.
  • 3Gorev N, Kodzhespirova I. Noniterative Implementation of Pressure-Dependent Demands Using the Hydraulic Analysis Engine of EPA- NET 2[J]. Water Resources Management, 2013, 27(10), 3 623-3 630.
  • 4Gonzalez-Cebollada C, Macarulla B, Sallcin D. Recursive Design of Pressurized Branched Irrigation Networks[J]. Journal of Irrigation and Drainage Engineering-ASCE, 2011,137(6) :375- 382.
  • 5Khadra R, Lamaddalena N. Development of a Decision Support System for Irrigation Systems Analysis[J]. Water Resources Manage- ment, 2010, 24(12):3 279-3 297.
  • 6严熙世,赵洪浜.给水管网理论和计算[M].北京:中国建筑工业出版社,1986.
  • 7\.Tan der Vorst H A. Bi-CGSTAB: A fast and smoothly converging variant of Bi CG for the solution of nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1992, 13(2) :631 -644.
  • 8Leveque R L. Finite volume methods for hyperbolic problems[M]. Cambridge: The press syndicate of the Univcrsity of Cambridge, 2002.

二级参考文献34

共引文献17

同被引文献27

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部