期刊文献+

棉花膜下滴灌二维土壤水与作物生长耦合模拟模型率定与验证 被引量:3

Calibration and Validation of Two-dimensional Soil Water Transport and Crop Growth Coupling Model under Mulched Drip Irrigation for Cotton
下载PDF
导出
摘要 通过新疆地区棉花膜下滴灌田间试验,获得土壤水分动态、作物生长指标、产量等数据以率定和验证二维土壤水与作物生长耦舍模拟模型。结果表明,基于二维土壤水与作物生长耦合模拟模型,土壤含水率模拟值与实测值的RMSE为0.018~0.059cm^3/cm^3。,一致性指数为0.504~0.990;叶面积指数、株高和地上部分干物质量预测值与实测值的RMSE分别为0.26~O.51、1.08~1.82cm和1032~1312kg/hm^2;棉花籽棉产量模拟值与实测值的差异为1.2%~9.0%。二维土壤水与作物生长耦合模拟模型可用于预测棉花膜下滴灌条件下土壤水分运动和作物生长过程。 In this study, a two-dimensional soil water transport and crop growth coupling model was calibrated and validated by soil water dynamic, crop growth indices and cotton yield obtained through field experiments under mulched drip irrigation for cotton in Xinjiang Uygur Autonomous Region. The results showed that RMSE changed from 0. 018 cm^3/cm^3 to 0. 059 cm^3/cm^3 and consistency index changed from 0. 504 to 0. 990 between the predicted values and measured values of soil water content; RMSEs were 0.26-0.51,1.08-1.82 cm, 1 032-1 312 kg/hm^2 between the predicted values and measured values of leaf area index, crop height and aboveground plant biomass, respectively. The difference ranged from 1.2% to 9.0% between the predicted values and measured values of seeded cotton yield. The two-dimensional soil water transport and crop growth coupling model could be used to simulate soil water dynamics and crop growth processes under mulched drip irrigation for cotton in Xinjiang.
出处 《灌溉排水学报》 CSCD 北大核心 2014年第4期343-347,共5页 Journal of Irrigation and Drainage
基金 国家自然科学基金项目(51179204) 国家科技支撑计划项目(2012BAD08B02)
关键词 膜下滴灌 作物生长模型 耦合模型 率定 验证 mulched drip irrigation crop growth model coupling model calibration validation
  • 相关文献

参考文献10

  • 1王军.甜瓜沟灌条件下水氮迁移转化规律与高效利用研究[D].北京:中国农业大学,2013.
  • 2Wang J, Huang G H, Zhan H B, et al. Evaluation of soil water dynan'lics and crop yield under furrow irrigation with a two-dimensional flow and crop growth coupled modei[J]. Agricultural Water Management, 2014,141: 10- 22.
  • 3Guan H, Li J, Li Y. Effects of drip system uniformity and irrigation amount on cotton yield and quality under arid conditions[J-. Agri- cultural Water Management, 2013,124: 37 - 51.
  • 4Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration. Guidelines for computing crop water requirements[R]. Rome: Italy, FAO Irrigation Drainage Paper No. 56, FAO, 1998.
  • 5Simunek J, van Genuchten M Th. The CHAIN_2D code for simulating two-dimensional movement of water, heat, and multiple solutes in variably-saturated porous media[R]. U S Salinity Laboratory Agricultural Research Service, U.S. Department of Agriculture, River- side, California, 1994.
  • 6Williams J R, Jones C A, Kiniry J R, et al. The EPIC crop growth model[J]. Transactions of ASAE, 1989,32(2):497- 511.
  • 7van Genuehten M Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of A- merica Journal, 1980, 44:892 - 898.
  • 8Schaap M G, Lei F J, van Genuchten M Th. ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions[J]. Journal of Hydrology, 2001, 251(3 - 4): 163 - 176.
  • 9Williams J R, Wang E, Meinardus A, et al. EPIC Users Guide v. 0509[R]. 2006. http://epieapex, brc. tamus, edu/media/23015/ epic0509 usermanualupdated, pdf.
  • 10关红杰,李久生,栗岩峰.干旱区滴灌均匀系数对土壤水氮分布影响模拟[J].农业机械学报,2014,45(3):107-117. 被引量:6

二级参考文献28

  • 1陈渠昌,郑耀泉.微灌工程设计灌水均匀度的选定[J].农业工程学报,1995,11(2):128-132. 被引量:19
  • 2ASAE EP405.1. Design and installation of microirrigation systems[ S]. ASAE, 2003.
  • 3Bordovsky J P, Porter D O. Effect of subsurface drip irrigation system uniformity on cotton production in the Texas high plains[ J]. Applied Engineering in Agriculture, 2008, 24 (4) : 465 - 472.
  • 4Wu I P, Barragan J. Design criteria for microirrigation systems[ Jl. Transactions of the ASAE, 2000, 43 (5) ~ 1145 - 1154.
  • 5Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration, guidelines for computing crop water requirements[ M ]. FAO Irrigation and Drainage Paper No. 56, United Nations-FAO. Rome, Italy, 1998.
  • 6Nakayama F S,Bueks D A, Clemmens A J. Assessing triekle emitter application uniformity [ J]. Transactions of the ASAE, 1979, 22(4): 816-821.
  • 7Skaggs T H, Trout T J, Simunek J, et al. Comparison of HYDRUS-2D simulations of drip irrigation with experimental observations [ J]. ASCE Journal of Irrigation and Drainage Engineering, 2004, 130(4) : 304 -310.
  • 8Simunek J, Sejna M, van Genuchten M T. HYDRUS-2D simulating water flow, heat, and solute transport in two-dimensional variably saturated media[ M~. Riverside CA: International Ground Water Modeling Center, 1999.
  • 9Ling G, EI-Kadi A I. A lumped parameter model for nitrogen transformation in the unsaturated zone [ J ]. Water Resources Research, 1998, 34(2): 203-212.
  • 10Feddes R A, Kowalik P J, Zaradny H. Simulation of field water use and crop yield[ M ]. Wageningen, Netherlands: Centre for Agricultural Publishing and Documentation, 1978.

共引文献5

同被引文献114

引证文献3

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部