期刊文献+

基于遗传-模拟退火算法的源项反演方法研究 被引量:7

Research of Source Term Inversion Based on Genetic Simulated Annealing Algorithms
下载PDF
导出
摘要 核事故发生后,在事故工况信息无法获取的情况下,通过环境监测数据进行源项反演是一种有效的源项估计方法。文章设计并实现了一种遗传-模拟退火源项反演方法,仿真计算结果表明:在监测数据无误差这种理想情况下,利用该方法可以得到准确的源项反演结果。为了更好地应用于实际,进一步研究了监测数据误差对反演结果的影响,以及监测数据存在误差的情况下,监测点布点方式和监测点数量对反演结果的影响。 After nuclear accident , if the accident conditions information cannot be obtained directly , it will be an effective method to evaluate source term by reconstructing source term with environmental monitoring data . The article describes the design and the realization of a source term inversion method based on genetic simulated annealing algorithms .The results of simulation show that in the ideal situation that the monitoring data has no error, accurate inversion results can be obtained with this method .In order to apply well in practical applica-tion, the article does further study about the impact of monitoring data error on the inversion results , and the impact of monitoring point distribution mode and the number of monitoring points in the situation that the moni -toring data have errors .
出处 《核电子学与探测技术》 CAS CSCD 北大核心 2014年第4期451-455,473,共6页 Nuclear Electronics & Detection Technology
基金 国家自然科学基金资助项目(11375102)
关键词 核事故 源项反演 遗传算法 模拟退火 nuclear accident source item inversion genetic algorithms simulated annealing
  • 相关文献

参考文献7

二级参考文献55

共引文献489

同被引文献103

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部