期刊文献+

平面半被动双足机器人步态稳定性分析 被引量:1

Gait stability analysis of flat semi-passive biped robot
下载PDF
导出
摘要 建立了以踝关节脉冲推力为动力源的平面半被动双足机器人模型,并推荐利用拉格朗日第二类方程得到机器人的动力学方程。为判断模型的稳定性,采用庞加莱映射方法分析了半被动双足机器人行走的固定点及其稳定性,并讨论了模型稳定行走的动力学附加条件。分析了模型中各机械参数对模型稳定性的影响。最后,在脉冲推力作用时添加扰动模型仍能稳定行走,证明模型对脉冲干扰具有鲁棒性。 A model of planar biped semi-passive dynamic walking robot is constructed by using impulsive push as power source on ankle, and the dynamic equations are derived with Euler-Lagrange Equation. In order to determine the stability of the model, the fixed point and its global stability of semi- passive biped robot walking are analyzed based on Poincare map. The dynamic additional conditions for the stability are discussed. The effect of mechanical parameters on the stability is analyzed. Finally, the semi-passive biped robot powered by an impulsive push can keep walking stably, which proves that the model is robust to various disturbances.
出处 《北京信息科技大学学报(自然科学版)》 2014年第4期30-36,共7页 Journal of Beijing Information Science and Technology University
基金 国家自然科学基金资助项目(11172047 11072038) 北京市属高等学校人才强教深化计划资助项目(PHR201106131)
关键词 双足机器人 半被动行走 脉冲推力 稳定性 鲁棒性 biped robot semi-passive walking impulsive push stability robustness
  • 相关文献

参考文献9

  • 1MCGEER T. Passive dynamic walking [ J ]. Inter- national Journal of Robotics Research, 1990, 9 (2) :62 -82.
  • 2M. W. Spong, Francesco Bullo. Controlled symme- tries and passive walking [J]. IEEE Transactions on Automatic Control, 2005,50 (7) : 1025 - 1031.
  • 3Asano F, Luo Z W, Yamakita M. Unification of dy- namic gait generation methods via variable virtual gravity and its control performance analysis [ C ]// Proceedings of IEEE/RSJ International Confer- ence on Intelligent Robots and Systems, 2004: 3865 - 3870.
  • 4柳宁,李俊峰,王天舒.用胞胞映射计算被动行走模型不动点的吸引盆[J].工程力学,2008,25(10):218-223. 被引量:15
  • 5刘丽梅.被动动态行走双足机器人的稳定性分析与控制研究[D].长春:吉林大学,2011.
  • 6Ikemata Y, Sano A, Fujimoto H. A physical princi- ple of gait generation and its stabilization derived from mechanism of fixed point [ C] //Proceedings of the 2006 IEEE International Conference on Ro- botics and Automation. Orlando, Florida, 2006 : 836 -841.
  • 7张奇志,周亚丽.双足机器人半被动行走固定点全局稳定性分析[J].工程力学,2013,30(3):431-436. 被引量:14
  • 8刘恒.非线性系统全局动态特性分析的PCM法及其在转子轴承系统中的应用[J].应用力学学报.1995,12(3):7-16.
  • 9张奇志,周亚丽.基于脉冲推力作用的双足机器人半被动行走[J].东南大学学报(自然科学版),2013,43(A01):102-106. 被引量:6

二级参考文献34

  • 1毛勇,王家廞,贾培发,韩灼.双足被动步行研究综述[J].机器人,2007,29(3):274-280. 被引量:24
  • 2McGeer T. Passive dynamic walking [J]. International Journal of Robotics Research, 1990, 9(2): 62-82.
  • 3Wisse M. Essentials of dynamic walking-Analysis and design of two-legged robots [D]. Delft: Delft University, 2004.
  • 4Collins S, Ruina A, Tedrake A. Efficient bipedal robots based on passive-dynamic walkers [J]. Science, 2005, 307:1082-1085.
  • 5Collins S, Wisse M, Ruina A. A three-dimensional passive-dynamic walking robot with two legs and knees [J]. International Journal of Robotics Research, 2001, 20: 607-615.
  • 6Garcia M, Chatterjee A, Ruina A. Efficiency, speed, and scaling of two-dimensional passive-dynamic walking [J]. Dynamical Systems, 2000, 15: 75-99.
  • 7Goswami A, Thuilot B, Espiau B. A study of the passive gait of a compass-like biped robot: Symmetry and chaos [J]. International Journal of Robotics Research, 1998, 17: 1282-1301.
  • 8Garcia M. Stability, scaling, and chaos in passive-dynamic gait models [D]. Ithaca, New York: Comell University, 1999.
  • 9Schwab A, Wisse M. Basin of attraction of the simplest walking model [C]. Proceedings of International Conference on Noise and Vibration. ASME, 2001.
  • 10Adolfsson J, Dankowicz H, Nordmark A. 3D passive walkers: Finding periodic gaits in the presence of discontinuities [J]. Nonlinear Dynamics, 2001, 24: 205-229.

共引文献27

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部