摘要
一、试题呈现题目 (2012年高考数学江苏卷第18题)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+ bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g'(x)=f(x)+2,求g(x)的极值点;(3)设h(x)=f(f(x))-c,其中c∈[-2,2],求函数y=h(x)的零点个数.二、试题的分析及数形结合解法本题的第(1)、(2)问考查利用导数求解函数的极值,解答比较简单,这里我们不作讨论.第(3)问考查复合函数(实际上是迭代函数)的零点个数问题.对于第(3)问,命题组提供的参考答案是利用换元法,根据函数零点存在定理,判断函数y=h(x)的零点个数,整个解法缺乏直观,考生不容易想到,运算量也比较大.下面我们借助数形结合的思想对第(3)问进行解答,并依此解法把第(3)问的结论进行推广.