期刊文献+

谷胱甘肽修饰的金纳米粒子探针比色法检测神经元素3 被引量:6

Visual Colorimetric Detection of Neurogenin 3 with Glutathione-Modified Gold Nanoparticle
下载PDF
导出
摘要 采用柠檬酸钠还原法合成了粒径为13 nm 的金纳米粒子,并在其表面修饰上谷胱甘肽( GSH-AuNPs)。在一定的盐浓度范围内,谷胱甘肽能保护金纳米粒子免受盐诱导的聚集。当神经元素3( Neuroge-nin3,ngn3)多肽片段存在时,在一定的盐浓度下,ngn3片段能够诱导GSH-AuNPs发生聚集,使金纳米粒子溶液由红色变成蓝色。以谷胱甘肽修饰的金纳米粒子为探针,建立了快速检测ngn3片段的比色方法。通过优化得到的最适实验条件为:ngn3与 GSH-AuNPs 的平衡反应时间10 min,缓冲液pH=6.0, NaCl 浓度100 mmol/L。在优化条件下,检测ngn3的线性范围为20~300μg/L,检出限( LOD)为8μg/L。结果表明,本方法具有良好的选择性,可用于实际样品的检测。 The 13 nm gold nanoparticles ( AuNPs ) were synthesized through the reduction of HAuCl4 by sodium citrate and the glutathione was assembled on the AuNPs. Under the experiment conditions, glutathione-modified AuNPs ( GSH-AuNPs ) with negative charge presented a wine red color owing to the electrostatic repulsion between nanoparticals. Upon the addition of neurogenin 3 ( ngn3 ) peptide, the aggregation of GSH-AuNPs was induced by ngn3 peptide under a certain concentration of salt. The color of AuNPs solution changed from red to blue as a function of the ngn3 peptide concentration. Thus, a rapid detection method for ngn3 peptide using GSH-AuNPs as colorimetric probe was established. The optimal experiment conditions were equilibrium time=10 min, pH=6. 0, CNaCl=100 mmol/L. Under the optimum conditions, the assay showed a linear response range of 20-300 μg/L for the peptide with a detection limit being 8 μg/L and exhibited excellent selectivity for ngn3 peptide.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2014年第7期955-961,共7页 Chinese Journal of Analytical Chemistry
基金 国家自然科学基金(No.21175124) 国家重点基础研究发展计划(No.2010CB933602)资助~~
关键词 神经元素3 多肽 金纳米粒子 比色 Neurogenin 3 Peptide Gold nanoparticle Colorimetry
  • 相关文献

参考文献29

  • 1Gu G Q, Dubauskaite J, Melton D A. Development, 2,002, 129:2447-2457.
  • 2Jenny M, Uhl C, Roche C, Duluc I, Guillermin V, Guillemot F, Jensen J, Kedinger M, Gradwohl G. EMBJ. , 21102, 21 : 6338 -6347.
  • 3Lee C S, Perreanh N, Brestelli J E, Kaestner K H. Genes Dev. , 2,002, 16:1488-1497.
  • 4Magenheim J, Klein A M, Stanger B Z, Ashery-Padan R, Sosa-Pineda B, Gu G Q, Dor Y. Dev. Biol. , 2011, 359: 26 -36.
  • 5Gradwohl G, Dierich A, Lemeur M. Proc. Natl. Acad. Sci. , 2,000, 97(4) : 1607-1611.
  • 6Yechoor , Liu , Espiritu C, Paul A, Oka K, Kojima H, Chan L. Developmental cell. , 2,11109, 16(3) : 358-373.
  • 7Yoshida S, Takakura A, Ohbo K, Wakabayashi J, Yamamoto M, Suda T, Nabeshima Y. Dev. Biol. , 21104, 269: 447 -458.
  • 8Lee J C, Smith S B, Watada H, Lin J, Scheel D, Mirmira R G, German M S. Diabetes, 21101, 50(5) : 928-936.
  • 9Serafimidis I, Rakatzi I, Episkopou V, Gouti M, Gavalas A. Stem Cells. , 21108, 26(1) : 3-16.
  • 10Wang S, Yan J B, Anderson D A, Xn Y W, Kanal M C, Cao Z, Gu G Q. Dev. Biol. , 2010, 339:26-37.

二级参考文献44

  • 1王淼,范崇东,苏晓晋.阳离子交换法分离纯化酵母细胞提取液中的谷胱甘肽[J].食品科学,2007,28(4):211-217. 被引量:9
  • 2陈明拓,周小华,骆辉.苦参碱的反胶束萃取研究[J].天然产物研究与开发,2007,19(2):295-298. 被引量:5
  • 3Chiaradia E, Avellini L, Rueca F, Spatema A, Porciello F, Antonnioni M T, Gaitia A. Comp Biochem Phys [ J ], 1998,4: 833.
  • 4Kono G,Harada M,Yokoyama M. JP CA 198 510 277 287f[P],1983.
  • 5Sakato K, Tanaka H. Biotechnol Bioeng [ J ], 1992,40 ( 8 ) : 904.
  • 6Wang Y D,Shi C Y,Gan Q,Dai Y Y. Sep PurifTechnol[J] ,2004,35:1.
  • 7Liu Y,Dong X Y,Sun Y. Sep Purif Technol[J] ,2007,53:289.
  • 8Chang Q L,Chen J Y,Zhang X F,Zhao N M. Enzyme Microb Technol[J] ,1997,20(2) :87.
  • 9Stobbe H, Xiong Y G, Wang Z H. Biotechnol Bioeng[ J ], 1997 ,53:267.
  • 10Nishiki T,Muto A,Kataoka T. Chem Eng J[J] ,1995,59:297.

共引文献27

同被引文献81

  • 1Chiti F, Dobson C M. Protein misfolding, functional amy- loid, and human disease [ J ]. Annual Review of Bio- chemistry, 2006, 75 (1): 333-366.
  • 2Swerdlow R H, Bums J M, Khan S M. The Alzheimer's disease mitochondrial cascade hypothesis: progress and perspectives [ J]. Biochimica et Biophysica Acta, 2014, 1842(8) : 1219-1231.
  • 3Pimplikar S. Neuroinflammation in Alzheimer's disease: from pathogenesis to a therapeutic target [ J ]. Journal of Clinical Immunology, 2014, 34( 1 ) : 64-69.
  • 4Jakob-Roetne R, Jacobsen H. Alzheimer's disease: from pathology to therapeutic approaches [ J] . Angewandte Chemie-Intemational Edition, 2009, 48 (17): 3030- 3059.
  • 5Breydo L, Uversky V N. Structural, morphological, and functional diversity of amyloid oligomers [ J ]. FEBS let- ters, 2015, 589(19): 2640-2648.
  • 6Iulita M 17, Cuello A C. Nerve growth factor metabolic dysfunction in Alzheimer's disease and down syndrome [ J ]. Trends in Pharmacological Sciences, 2014, 35 (7) : 338-348.
  • 7Selkoe D J. Alzheimer's disease: genes, proteins, and therapy [ J]. Physiological Reviews, 2001, 81 (2) : 741- 766.
  • 8Sipe J D, Cohen A S. Review: history of the amyloid fibril [J]. Journal of Structural Biology, 2000, 130(2/3) : 88- 98.
  • 9Westermark P, Benson M D, Buxbaum J N, et al. A primer of amyloid nomenclature [ J ]. Amyloid-Joumal of Protein Folding Disorders, 2007, 14(3) : 179-183.
  • 10Nelson R, Sawaya M R, Balbirnie M, et al. Structure of the cross-beta spine of amyloid-like fibrils [ J ]. Nature, 2005, 435(743) : 773-778.

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部