期刊文献+

基于LDA模型的社交网络主题社区挖掘 被引量:5

Mining of Topic Communities in Social Networks Based on LDA Model
下载PDF
导出
摘要 以微博为代表的社交网络已成为社会舆情的战略要地。对于社交网络中隐含主题社区的发掘,具有较高的商业推广和舆情监控价值。近年来,概率生成主题模型LDA(Latent Dirichlet Allocation)在数据挖掘领域得到了广泛应用。但是,一般而言,LDA适用于处理文本、数字信号数据,并不能合理地用来处理社交网络用户的关系数据。对LDA进行修改,提出适用于处理用户关系数据的Tri-LDA模型,挖掘社交网络中的主题社区。实验结果表明,基于Tri-LDA模型,进行机器学习所得到的结果基本能够反映社交网络上真实的主题社区分布情况。 Social networks has gained huge popularity in particular microblogs in recent years. The discovery of latent topic communities in social networks carries high value in commercial promotion,public opinion monitoring,etc. In recent years,probabilistic generative topic model( Latent Dirichlet Allocation,LDA) has been widely applied in the field of data mining. Generally,LDA can process text or digital signal data,however,without any modification,it lacks the capability to properly process the relation data between users in a social network. By modifying the original LDA model,this essay proposes a new model,Tri-LDA and applies it to dig the hidden topic communities in a social network. The experiment result shows that the topic communities found by Tri-LDA is basically consistent with the realistic topic communities that hand-labeled by the authors.
出处 《计算机与现代化》 2014年第8期21-25,29,共6页 Computer and Modernization
基金 广东省高等学校科技创新项目(2013KJCX0117)
关键词 LDA 社交网络 主题社区 LDA social networks topic community
  • 相关文献

参考文献17

  • 1Girvan M, Newman M E J. Community structure in social and biological networks[J]. PNAS,2002,99(12):7821-7826.
  • 2Li Xin, Guo Lei, Zhao Yihong, Eric. Tag-based social interest discovery[C]// Proceedings of the 17th International Conference on World Wide Web. 2008:675-684.
  • 3Mei Qiaozhu, Cai Deng, Zhang Duo, et al. Topic modeling with network regularization[C]// Proceedings of the 17th International Conference on World Wide Web. 2008:101-110.
  • 4Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003,3:993-1022.
  • 5Gregor Heinrich. Parameter Estimation for Text Analysis[DB/OL]. http://faculty.cs.byu.edu/-ringger/CS601R/papers/Heinrich-GibbsLDA.pdf, 2005-05-01.
  • 6Wasserman S, Faust K. Social Network Analysis: Methods and Applications[M]. UK :Cambridge University Press, 1994.
  • 7Ahuja R K, Magnanti T L, Orlin J B. Network Flows: Theory,Algorithms, and Applications[M]. US:Prentice Hall, 1993.
  • 8Katz L. A new status index derived from sociometric analysis[J]. Psychometrika, 1953,18(1):39-43.
  • 9McCallum, Wang Xuerui, Corrada-Emmanud A. Topic and role discovery in social networks with experiments on enron and academic email[J]. Journal of Artificial Intelligence Research, 2007, 30:249-272.
  • 10Newman M E J. Detecting community structure in networks[J]. The European Physical Journal B, 2004,38(2):321-330.

二级参考文献38

  • 1朱靖波,叶娜,罗海涛.基于多元判别分析的文本分割模型[J].软件学报,2007,18(3):555-564. 被引量:15
  • 2石晶,戴国忠.基于PLSA模型的文本分割[J].计算机研究与发展,2007,44(2):242-248. 被引量:25
  • 3Kehagias A, Nicolaou A, Petridis V, Fragkou P. Text segmentation by product partition models and dynamic programming. Mathematical and Computer Modeling, 2004, 39(2-3): 209-217.
  • 4Gina-Anne L. Prosody-based topic segmentation for mandarin broadcast news. In: Proceedings of the 9th American Chapter of the Association for Computational Linguistics- Human Language Technologies. Boston, USA: Association for Computational Linguistics, 2004. 137-140.
  • 5Olivier F. Using collocations for topic segmentation and link detection. In: Proceedings of the 19th International Conference on Computational Linguistics. Taipei, China: Association for Computational Linguistics, 2002. 1-7.
  • 6Li H, Yamanishi K. Topic analysis using a finite mixture model. Information Processing and Management, 2003, 39(4): 521-541.
  • 7Hofmann T. Probabilistic latent semantic analysis. In: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence. Stockholm, Sweden: Morgan Kaufmann, 1999. 289-296.
  • 8Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation. Journal of Machine Learning Research, 2003, 3:993-]022.
  • 9Steyvers M, Griffiths T. Probabilistic topic models. Handbook of Latent Semantic Analysis. New Jersey: Springer, 2007.
  • 10Minka T, Lafferty J. Expectation-propagation for the generative aspect model. In: Proceedings of the 18th Uncertainty in Artificial Intelligence. Alberta, Canada: Morgan Kaufmann, 2002. 352-359.

共引文献195

同被引文献24

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部