期刊文献+

基于GSA的用电信息采集异常精确定位研究 被引量:1

Research of accurate anomaly positioning of electric energy data acquisition based on GSA
下载PDF
导出
摘要 随着电力信息化建设不断推进,涉及的各类电力设备越来越多,为了保证电力系统的可靠正常运行,辨识系统中的用电信息采集异常并对异常点进行精确定位是电力系统安全稳定运行的前提和条件。文章涉及了电网中的用电信息采集领域,论文研究了建立在神经网络和聚类分析基础上的GSA异常数据定位算法,该算法运用神经网络完成对测量数据的预处理,并对聚类分析后的结果进行判断,完成异常数据的精确定位。仿真比较表明,该算法能较好地实现电力系统中用电信息采集异常的精确定位功能,具有一定的有效性与实用性,有效避免了异常数据的漏检与误检。 With the continued progress of the power informatization, more and more kinds of the electrical equipments are involved. To ensure reliable and normal operation of power system, the system would need to identify anomaly of electric energy data acquisition and do accurate positioning to the abnormal nodes. In terms of energy data acquisition field in power system, this article researches the GSA anomaly positioning algorithm based on neural network and clustering analysis. The algorithm accomplishes the pretreatment of surveying data via the neural network, and then judges the result of clustering analysis so as to finish the positioning of abnormal nodes. Testing shows that this algorithm can well accomplish accurate anomaly positioning of electric energy data acquisition in power system, which presents effectiveness and practicality, and effectively avoid the undetected and false-detected abnormal nodes.
出处 《电子设计工程》 2014年第14期88-91,共4页 Electronic Design Engineering
关键词 用电信息采集 异常定位 数据挖掘 GSA electric energy data acquisition anomaly positioning data mining GSA
  • 相关文献

参考文献7

  • 1Tibshirini R,Walther G,Hastie T.Estimating the Number of Clusterin a Dataset via the Gap Statistic[J].Unpublished Technical Report: Stanford University.2000: 1-18.
  • 2H.Salehfar,R.Zhao.A neural network pre-estimation filter forbad-data detection and identification in power system state estimation[J].Electric power system research.1995,34(8): 127-134.
  • 3HUANG Shy-jier,LIN Jeu-min.Enhancement of Power SystemData Debugging Using GSA-based Data-mining Technique[J].IEEE Trans on Power Systems,2002,17(4): 1022-1026.
  • 4闻新,周露,李翔,等.Matlab神经网络仿真与应用[M].北京:科学出版社,2004.285-299.
  • 5邵峰晶,于忠清.数据挖掘原理与算法[M].北京:中国水利水电出版社,2004.
  • 6黄新波,王娅娜,刘林,宋桐.变压器油色谱在线监测中BP神经网络算法分析[J].陕西电力,2013,41(6):56-60. 被引量:11
  • 7宁姗.基于蚁群聚类的多目标环形分类的方法研究[J].工业仪表与自动化装置,2012(5):70-73. 被引量:3

二级参考文献17

共引文献20

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部