期刊文献+

运动人体轮廓检测算法的分析与改进

Analysis and improvement of human movement detection algorithm
下载PDF
导出
摘要 在视频序列的人体运动分析中,实时分割出运动的人体,是研究的关键步骤。为了克服不均匀光照、前景运动缓慢、背景中存在摇摆的树叶等因素对检测带来的影响,提出了一种背景减除法与帧间差分相结合的运动目标检测方法。该方法首先通过基于帧差法的背景模型建立方法建立背景图像,再结合背景减除与带有权值的帧间差分检测运动目标,降低目标物体对速度和环境干扰的敏感性。最后通过形态学梯度运算操作消除外界噪声的影响。实验结果表明,本文提出的算法计算简单,对环境适应能力较强,是一种有效的运动人体检测方法。 In human motion analysis of video sequences, segmenting the motion human body in real-time is the key step. In order to overcome the influence of uneven illumination, low movement of objects in the foreground, swing leaves in the background and other factors to detection, a moving object detection algorithm based on background and the weights multiple interframe difference is presented. At first, background model is obtained by the method based on frame difference. Then, the moving object is extracted with background subtraction and multi-frame-differencing, which is insensitivity to the target object's speed and environment disturbance. Finally, morphological gradient operation is applied to remove the influence of outside noise. Experiment results show that the proposed algorithm has a strong ability to adapt the environment and is an effective detection method for moving the human body.
作者 张颖 连旭
出处 《电子设计工程》 2014年第14期123-127,共5页 Electronic Design Engineering
基金 国家自然科学基金项目(60874017)
关键词 运动目标检测 背景模型建立 权值多重帧间差分 形态学梯度 moving object detection background modeling weights multiple interframe difference morphological gradient
  • 相关文献

参考文献9

二级参考文献36

  • 1朱明旱,罗大庸,曹倩霞.帧间差分与背景差分相融合的运动目标检测算法[J].计算机测量与控制,2005,13(3):215-217. 被引量:77
  • 2周西汉,刘勃,周荷琴.一种基于对称差分和背景消减的运动检测方法[J].计算机仿真,2005,22(4):117-119. 被引量:28
  • 3张磊,史金飞,罗翔.运动目标检测的差分图像法分析研究[J].工业仪表与自动化装置,2007(3):7-11. 被引量:11
  • 4B Horn and B Schunck. Determining Optical Flow [ J ]. Artificial Intelligence, 1981,17 : 185 - 203.
  • 5L C Shapiro and G C Stockman计算机视觉[M].北京:机械工业出版社,2005.
  • 6Shu Te S, C Yung Yaw. Moving object segmentation using improved running gaussian average background model [C] //Proceedings of the 2008 Digital Image Computing: Techniques and Applications, Beijing, 2008: 24-31.
  • 7Panahi S S, S Hadadan, S Gheissari N. Evaluation of background subtraction methods [C] //Digital Image Computing: Techniques and Applications, 2008 (DICTA'08), Canberra, Australia, 2008: 357-364.
  • 8Gary Bradski, ADR I AN Kaehler . Learning open CV [M]. Cambridge: O' Reilly Media, Inc, 2008: 12-13.
  • 9Kyungnam K. Real-time foreground-background segmentation using codebook model [J]. Elsevier, 2005, 11 (3): 172-185.
  • 10Sankaranarayanan A C, Veeraraghavan A, Chellappa R. Object detection, tracking and recognition for multiple smart cameras [J]. Proceedings of the IEEE, 2008, 96 (10): 1606-1624.

共引文献208

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部