期刊文献+

惯性技术视角下动态重力测量技术评述(二):不同的惯性平台 被引量:2

Overview on Dynamic Gravimetry in the Perspective of Inertial Technology,Part Ⅱ:Different Inertial Platforms
下载PDF
导出
摘要 动态重力测量技术是惯性技术的一种典型应用。作为动态重力测量系统不可或缺的一部分,稳定平台的功能是提供一种能够隔离载体动态、实时跟踪参考系的物理装置,或提供载体相对于参考系姿态信息的软件算法。当前大多数的稳定平台,都是基于惯性元件构建的,可称之为惯性平台。从稳定平台的角度对几种常见重力仪进行分类,对采用四种类型惯性平台的重力仪进行较详细的分析和评述,即双轴阻尼陀螺稳定平台、捷联方位双轴惯导平台、三轴惯导平台和捷联惯导平台。 Dynamic gravimetry is a typical application of the inertial technology. The stabilized platform, an indispensable component of a dynamic gravimeter, provides a physical device to isolate the dynamics of the craft and to track a reference frame, or provides the software flame for the craft. The stabilized platforms of modem algorithm of the attitude information with respect to this dynamic gravimeters, though in different forms, are all constructed based on inertial sensors, i. e. , gyroscopes and accelerometers, and as a result, can be termed inertial platforms. The widely used dynamic gravimeters are classified in terms of different stabilized platforms. These gravimeters, with four different platforms of the two-axis damped gyro-stabilized platform, the strapdown- azimuth two-axis inertial navigation platform, the three-axis inertial navigation platform, and the strapdown inertial navigation platform, are analyzed and summarized in a relatively comprehensive manner.
出处 《海洋测绘》 2014年第4期73-78,共6页 Hydrographic Surveying and Charting
基金 国家自然科学基金(41374018)
关键词 重力测量 惯性技术 重力仪 惯性导航系统 陀螺 加速度计 姿态 平台 捷联 gravimetry inertial technique gravimeter inertial navigation system gyroscope accelerometer attitude platform strapdown
  • 相关文献

参考文献32

  • 1Sokolov A. High Accuracy Airborne Gravity Measurements. Methods and Equipment [ C ]//In: 18th IFAC World Congress; 2011; Milano: IFAC; 2011. p. 1889-1891.
  • 2Czompo J. Airborne scalar gravimetry system errors in the spectral domain [ M ]. Geomatics Engineering, University of Calgary, 1994.
  • 3Wei M, Schwarz K. Hight test results from a strapdown airborne gravity system[ J]. Journal of Geodesy, 1998, 72(6) :323-332.
  • 4Glennie C, Schwarz K. A comparison and analysis of airborne gravimetry results from two strapdown inertial/ DGPS systems [ J ]. Journal of Geodesy, 1999,73 (6) : 311-321.
  • 5Titterton D, Weston J. Strapdown inertial navigation technology[ M]. Institution of Electrical Engineers ,2004.
  • 6Valliant H. The LaCoste and Romberg air/sea gravity meter:an overview [ J ]. CRC Handbook of Geophysical Exploration at Sea, 1992 : 141 - 176.
  • 7Bell RE, Childers VA, Arko RA, et al. Airborne gravity and precise positioning for geologic applications [ J ]. Journal of Geophysical Research, 1999, 104 ( B7 ) : 15281-15215,15292.
  • 8Jones PC,Johnson AC, von Frese RR, et al. Detecting rift basins in the Evans Ice Stream region of West Antarctica using airborne gravity data [ J ]. Tectonophysics ,2002,347 ( 1 ) :25-41.
  • 9Forsberg R, Brozena J. Airborne geoid measurements in the arctic ocean [ C ]//In : Gravity, Geoid and Marine Geodesy, Proc. IAG Symposia GRAGEOMAR; 1996 ; Tokyo; 1996 : 139-146.
  • 10Olesen AV. Improved airborne scalar gravimetry for regional gravity field mapping and geoid determination [ D ]. Copenhagen: University of Copenhagen,2002.

二级参考文献8

  • 1Sumner D L, Sung-Leung Chew, et al. Passive navigation system[P]. US: 6014103. Jan. 11, 2000.
  • 2Longman I M. Formulas for computing the tidal accelerations due to the moon and the sun[J]. Joumal of Geophysical Research, 1959, 64(12): 2351-2355.
  • 3Scintrex Limited. CG-5 Scintrex autograv system operation manual[R]. Concord, Ontario, Canada, 2009.
  • 4Jekeli C. Airbome gradiometry error analysis[J]. Surveys in Geophysics, 2006(27): 257.
  • 5Papoulis A, Pillai S U. Probability, random variables and stochastic processes[D]. Polytechnic University, 2004:511-561.
  • 6Richeson J A. Gravity gradiometer aided inertial navigation with non-GNSS environments[D]. University of Maryland, USA, 2008.
  • 7赵立业,李宏生,周百令,李坤宇.高精度海洋重力测量中厄特弗斯改正误差分析[J].中国惯性技术学报,2008,16(4):462-465. 被引量:15
  • 8赵池航,周百令,胡斌宗.小波多尺度分析在重力仪数据处理中的应用研究[J].中国惯性技术学报,2003,11(1):1-5. 被引量:5

共引文献5

同被引文献42

  • 1吴美平,蔡劭琨,于瑞航,曹聚亮.捷联式重力测量技术研究进展[J].导航与控制,2020(4):161-169. 被引量:5
  • 2任来平,张襄安,刘国斌.海洋磁力测量系统误差来源分析[J].海洋测绘,2004,24(5):5-8. 被引量:17
  • 3陶本藻,邱卫宁.误差理论与测量平差[M].武汉:武汉大学出版社,2012.
  • 4Huang M. Marine gravity surveying line system adjustment [J . Journal of Geodesy, 1995, 70 ( 3 ) : 158-165.
  • 5Huang M,Guan Z,Zhai G,et al.On the compensation of systematic errors in marine gravity measurements [J]. Marine Geodesy, 1999,22 ( 3 ) : 183-194.
  • 6Auld D, Law L, Currie R.Cross-over error and reference station location for a marine magnetic survey [J .Marine Geophysical Researches, 1979,4(2) : 167-179.
  • 7Wang Y, Shao S, Wang S, et al. Measurement error analysis of multibeam echosounder system mounted on the deep-sea autonomous underwater vehicle [J]. Ocean Engineering, 2014,91 : 111-121.
  • 8Zhao J, Yan J, Zhang H, et al. A new method for weakening the combined effect of residual errors on multibeam bathymetric data [J]. Marine Geophysical Research,2014,35 (4) :379-394.
  • 9Schmitt T, Mitchell NC, Ramsay ATS. Characterizing uncertainties for quantifying bathymetry change between time-separated multibeam echo-sounder surveys [ J . Continental Shelf Research, 2008, 28 (9) : 1166-1176.
  • 10W essel P. Tools for analyzing intersecting tracks: The x2sys package [ J ]. Computers & Geosciences, 2010, 36 ( 3 ) : 348-354.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部