期刊文献+

一种基于Multi-Agent恶意代码行为捕获方案的设计与实现

A Design and Implementation of Behavior Capture System on Multi-Agent for Supporting Malware
下载PDF
导出
摘要 恶意代码行为捕获是进行恶意代码行为分析,提高防御恶意代码能力的基础。当前,随着恶意代码技术的发展,恶意代码结构及其通信活动日益复杂,使得传统的恶意代码行为捕获技术难以有效应对恶意代码的攻击与破坏。如何更加有效地捕获恶意代码行为成了目前信息安全领域的研究热点。基于此目的,本文在充分利用Agent的自主性和适应性,实时采集目标系统的状态信息的基础上,提出了一种基于多Agent的恶意代码行为捕获方案,分析了其行为捕获流程,介绍了功能模块组成,并基于Windows平台实现了该方案,为下一步针对恶意代码分析及防御提供了良好的基础。 Capturing the behavior of malicious code is the foundation of malicious code analyzing as wel as improving the ability of defending against malicious code. With the development of technologies, malicious code is becoming more complex in structures and communication activities, making it dif icult for traditional capturing technologies to deal ef ectively with the at acks and destructions brought by malicious codes. Therefore, how to capture the behavior of malicious code more ef ectively has become a hot topic in the field of information security now. In this paper, we propose a Multi-Agent scheme to capture malicious code behavior, which is based on real-time capture of the target system status information through making ful use of the autonomy, adaptability of Agent. As wel , the paper analyses the behavior capturing process, describes the components of the system, and makes an implementation on Windows, which provides a good basis for further analysis and researches on defending against malicious code.
出处 《信息安全与技术》 2014年第8期19-24,41,共7页
关键词 恶意代码 多智能体 行为捕获 行为知识库 malicious code multi-agent behavior captured feature extraction
  • 相关文献

参考文献5

二级参考文献48

  • 1徐明,陈纯,应晶.一个两层马尔可夫链异常入侵检测模型(英文)[J].软件学报,2005,16(2):276-285. 被引量:7
  • 2WHITMA N, MMICHAE L, MATTORD H. Principles of Information Security[M]. Canada: Thomson, 2009. 290 -301.
  • 3JAN N Y, LIN S C, TSENT S S, et al. A decision support system for onstructing an alert classification model[J]. Journals of Expert Systems with Applications, 2009, 36(8): 11145-11155.
  • 4LINDQIVST U, PORRAS P A. Detecting Computer and Network Misuse Through the Production-Based Expert System Toolset (P-BEST)[R]. IEEE Symposium on Security and Privacy, Oakland, 1999. 146-161.
  • 5JOAO B D, RAVICHANDRAN B. Statistical traffic modeling for network intrusion detection[A]. Eighth IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems (MASCOTS'00)[C]. San Francisco, 2000.
  • 6WUU L C, HUNG C H, CHEN S F. Building intrusion pattern miner for Snort network intrusion detection system[J]. Journal of Systems and Software, 2007,80(10):1699-1715.
  • 7NEIMNBE J O. Automated technique for debugging network intrusion detection systems[A]. IEEE 2010 International Conference on Intelligent Systems, Modelling and Simulation (ISMS)[C]. Liverpool, 2010. 362-367.
  • 8CUPPENS F, MIEGE A. Alert correlation in a cooperative intrusion detection framework[A]. Proceedings of IEEE Symposium on Security and Privacy[C]. Berkeley, 2002.
  • 9NEHINBE J O. A simple method for improving intrusion detections in corporate networks[A]. International Conference on Information Security and Digital Forensics[C]. London, 2009.
  • 10DHARMAPURIKAR S, LOCKWOOD J W. Fast and scalable pattern matching for network intrusion detection systems[J]. IEEE Journal on Selected Areas in Communications, 2006,24(10): 1781-1792.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部