摘要
针对表面肌电(sEMG)信号信噪比较低的问题,本文在Donoho通用阈值法的基础上,采用了一种基于自适应阈值处理的小波去噪方法。相对于通用阈值法,这种方法可以根据sEMG信号的不同信噪比自适应地调整阈值,更有效地去除噪声、减小信号的失真,从而提高信噪比。仿真和真实sEMG信号实验均论证了这种方法的优越性。
Surface electromyogram (sEMG) may have low signal to noise ratios. An adaptive wavelet thresholding technique was developed in this study to remove noise contamination from sEMG signals. Compared with conventional wavelet thresholding methods, the adaptive approach can adjust thresholds based on different signal to noise ratios of the processed signal, thus effectively removing noise contamination and reducing distortion of the EMG signal. The advantage of the developed adaptive thresholding method was demonstrated using simulated and experimental sEMG recordings.
出处
《生物医学工程学杂志》
EI
CAS
CSCD
北大核心
2014年第4期723-728,共6页
Journal of Biomedical Engineering
基金
国家自然科学基金资助项目(30870656)
关键词
表面肌电
小波去噪
自适应阈值
表面肌电信号分解
surface electromyography
denoising using wavelet technique, adaptive threshold
decomposition of surface electromyogram signal