期刊文献+

基于自适应阈值处理的表面肌电信号小波去噪研究 被引量:4

Surface Electromyogram Denoising Using Adaptive Wavelet Thresholding
原文传递
导出
摘要 针对表面肌电(sEMG)信号信噪比较低的问题,本文在Donoho通用阈值法的基础上,采用了一种基于自适应阈值处理的小波去噪方法。相对于通用阈值法,这种方法可以根据sEMG信号的不同信噪比自适应地调整阈值,更有效地去除噪声、减小信号的失真,从而提高信噪比。仿真和真实sEMG信号实验均论证了这种方法的优越性。 Surface electromyogram (sEMG) may have low signal to noise ratios. An adaptive wavelet thresholding technique was developed in this study to remove noise contamination from sEMG signals. Compared with conventional wavelet thresholding methods, the adaptive approach can adjust thresholds based on different signal to noise ratios of the processed signal, thus effectively removing noise contamination and reducing distortion of the EMG signal. The advantage of the developed adaptive thresholding method was demonstrated using simulated and experimental sEMG recordings.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2014年第4期723-728,共6页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(30870656)
关键词 表面肌电 小波去噪 自适应阈值 表面肌电信号分解 surface electromyography denoising using wavelet technique, adaptive threshold decomposition of surface electromyogram signal
  • 相关文献

参考文献10

  • 1CLANCY E A, MORIN E L, MERLETTI R. Sampling, noise-reduction and amplitude estimation issues in surface electromyography [J]. J Electromyogr Kinesiol, 2002, 12 (1): 1-16.
  • 2RAEZ M B, HUSSAIN M S, MOHD-YASIN F. Techniques of EMG signal analysis: detection, processing, classification and applications [J]. Biol Proeed Online, 2006, 8(1): 11-35.
  • 3潘泉,张磊,孟晋丽,等.小波滤波方法及应用[M].北京:清华大学出版社,2006.
  • 4XU Y, WEAVER J B, HEALY D M, et at. Wavelet trans- form domain filters: a spatially selective noise filtration tech- nique [J]. IEEE Trans Image Process, 1994, 3(6) : 747-758.
  • 5MALLAT S, HWANG W L. Singularity detection and pro- cessing with wavelets [J]. IEEE Trans Inf Theo, 1992, 38 (2) : 617-643.
  • 6DONOHO D L. De-noising by soft-thresholding [J]. IEEE Trans Inf Theo, 1995, 41(3) : 613-627.
  • 7DONOHO D L, JOHNSTONE J M. Ideal spatial adaptation by wavelet shrinkage [J]. Biometrika, 1994, 81 (3): 425- 455.
  • 8张磊,潘泉,张洪才,戴冠中.小波域滤波阈值参数c的选取[J].电子学报,2001,29(3):400-402. 被引量:64
  • 9雷培源,杨基海,陈香.基于三级滤波器的表面肌电信号降噪处理[J].北京生物医学工程,2011,30(1):62-66. 被引量:11
  • 10赵章琰,陈替,成娟,等.表面肌电圈系统及其电极板:中国ZL200910136532.7[P].2011-04.

二级参考文献14

  • 1季虎,孙即祥,毛玲.基于小波变换与形态学运算的ECG自适应滤波算法[J].信号处理,2006,22(3):333-337. 被引量:25
  • 2任小梅,王志中,胡晓.应用小波变换和ICA方法的肌电信号分解[J].数据采集与处理,2006,21(3):272-276. 被引量:4
  • 3张泾周,张光磊,戴冠中.自适应算法与小波变换在心电信号滤波中的应用[J].生物医学工程学杂志,2006,23(5):977-980. 被引量:12
  • 4Clancy EA,Morin EL,Merletti R.Sampling,noise-reduction and amplitude estimation issues in surface electromyography[J].Journal of Electromyography and Kinesiology,2002,12:1-16.
  • 5Huang NE,Shen Z,Long SR.The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[C].Proceedings of the Royal Society of London,1998,454:903-995.
  • 6Boudraa AO,Cexus JC,Saidi Z.EMD-Based Signal Noise Reduction[J].International Journal of signal processing,2005,1:33-37.
  • 7Andrade AO,Nasuto S,Kyberd P,et al.EMG signal filtering based on empirical mode decomposition[J].Biomedical Signal Processing and Control,2006,1:44-55.
  • 8Kopsinis Y,McLaughlin S.Empirical mode decomposition based denoising techniques[C].IAPR Workshop:Cognitive Information Processing,2008:42-47.
  • 9中国科技大学.表面肌电图系统及其电极板:中国,PIDE090201[P].2009-03-23.
  • 10Pan Quan,IEEE Transon SP,1999年,47卷,3401页

共引文献82

同被引文献20

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部