期刊文献+

阿尔茨海默病患者自发脑电信号子波熵的研究 被引量:3

Wavelet Entropy Analysis of Spontaneous EEG Signals in Alzheimer's Disease
原文传递
导出
摘要 子波熵是衡量信号复杂程度的指标,本文采用连续子变换的方法对轻、中、重度阿尔茨海默病(AD)患者及正常对照老年人的脑电(EEG)信号进行子波分析,根据子波系数计算EEG信号的子波功率谱分布,提取描述EEG信号复杂程度的定量指标——子波熵。对轻、中、重度AD患者和正常对照的自发状态下EEG信号的子波熵值进行比较,并将子波熵值与MMSE进行相关性分析。结果显示,轻、中、重度AD组和正常对照组之间EEG信号的子波熵存在显著差异(P〈0.01)。组间比较显示轻、中、重度AD患者EEG信号的子波熵均低于正常对照,差异具有统计学意义(P〈0.05)。这与AD患者EEG信号的功率谱分布单一有关。进一步研究表明EEG信号的子波熵与其MMSE评分均存在显著相关(r=0.601-0.799,P〈0.01)。子波熵可以作为描述EEG信号复杂程度的定量指标,子波熵值有可能成为AD诊断和病情评估的电生理指标。 Wavelet entropy is a quantitative index to describe the complexity of signals. Continuous wavelet transform method was employed to analyze the spontaneous electroencephalogram (EEG) signals of mild, moderate and severe Alzheimer's disease (AD) patients and normal elderly control people in this study. Wavelet power spectrums of EEG signals were calculated based on wavelet coefficients. Wavelet entropies of mild, moderate and severe AD patients were compared with those of normal controls. The correlation analysis between wavelet entropy and MMSE score was carried out. There existed significant difference on wavelet entropy among mild, moderate, severe AD patients and normal controls (P〈0.01). Group comparisons showed that wavelet entropy for mild, moderate, severe AD pa- tients was significantly lower than that for normal controls, which was related to the narrow distribution of their wavelet power spectrums. The statistical difference was significant (P〈0.05). Further studies showed that the wavelet entropy of EEG and the MMSE score were significantly correlated (r= 0. 601-0. 799, P〈0.01). Wavelet entropy is a quantitative indicator describing the complexity of EEG signals. Wavelet entropy is likely to be an electrophysiological index for AD diagnosis and severity assessment.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2014年第4期755-761,770,共8页 Journal of Biomedical Engineering
基金 天津市卫生局科技基金资助项目(2011KY21) 天津市自然科学基金资助项目(14JCYBJC27000)
关键词 阿尔茨海默病 脑电图 子波分析 子波熵 Alzheimer's disease electroencephalogram wavelet analysis wavelet entropy
  • 相关文献

参考文献19

  • 1POWELL C E, PERCEIVAL I C. A spectral entropy method for distinguishing regular and irregular motion of Hamiltonian systems [J]. Journal of Physics A: Mathematical and General, 1979, 12(11): 2053-2071.
  • 2STAM C J, TAVY D L, KEUNEN R W. Quantification of alphy rhythm desynchronization using the acceleration spec- trum entropy of the EEG [J]. Clin Electroencephalogr, 1993, 24(3) : 104-109.
  • 3MALLAT S G. A theory for multiresolution signal decompo- sition:the wavelet representation[J]. IEEE Tran on PAMI, 1989, 11(7): 674-693.
  • 4BLANCO S, FIGLIOLA A, QUIAN QUIROGA R, et al. Time-frequency analysis of electroencephalogram series. III. Wavelet packets and information cost function [J]. P.hys Rev E, 1998, 57(1): 932-940.
  • 5WANG D, MIAO D, XIE C. Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection [J]. Expert Syst Appl, 2011, 38(11) : 14314-14320.
  • 6郁洪强,赵欣,詹启生,刘海婴,李宁,王明时.基于小波熵的网络成瘾脑电复杂性分析[J].天津大学学报,2008,41(6):751-756. 被引量:13
  • 7YILDIZ A, AKIN M, POYRAZ M, et al. Application of a- daptive neuro-fuzzy inference system for vigilance level esti- mation by using wavelet-entropy feature extraction [J]. Expert Syst Appl, 2009, 36(4): 7390-7399.
  • 8KAR S, BHAGAT M, ROUTRAY A. EEG signal analysis for the assessment and quantification of driver's fatigue [J]. Trans Res Part F,2010, 13(5): 297-306.
  • 9SLOBOUNOV S, CAO C, SEBASTIANELLI W. Differenti- al effect of first versus second concussive episodes on wavelet information quality of EEG [J]. Clin Neurophys, 2009, 120 (5) : 862-867.
  • 10ROSSO O A, BLANCO S, YORDANOVA J, et al. Wavelet entropy: a new tool for analysis of short duration brain elec- trical signals [J]. J Neurosci Methods, 2001, 105(1) : 65-75.

二级参考文献11

  • 1周春莲,郭继志,刘宪亮,王春平,吕晓莉.网络成瘾问题研究现状及展望[J].中国医学伦理学,2004,17(3):21-23. 被引量:43
  • 2赵仑,高文彬.网络成瘾患者早期面孔加工N170的研究[J].航天医学与医学工程,2007,20(1):72-74. 被引量:26
  • 3Young K S. Interact addiction : The emergence of a new disorder [ J ] . Cyberpsychol Behave, 1998, 1 ( 3 ) : 237.
  • 4Thorsten F, Patrick W, Manfred H. Nicotine stroop and addiction memory: An ERP study [ J ].International Journal ofPsychophysiology, 2006,62 ( 2 ) : 224-232.
  • 5Charalabos C, Papageorgiou Ioannis A.Long-term abstinence syndrome in heroin addicts : Indices of P300 alterations associated with a short memory task [ J ]. Progress in Neuro-Psychopharmacology and Biological Psychiatry,2004,28 (7) :1109-1115.
  • 6Rosso O A, Blanco S, Yordanova J, et al. Wavelet entropy:A new tool for analysis of short duration brain electrical signals [ J ]. Journal of Neuroscience Methods, 2001,105 (1) :65-75.
  • 7Sello S. Wavelet entropy and the multi-peaked structure of solar cycle maximum [ J ]. New Astronomy, 2003,8 ( 2 ) : 105-117.
  • 8Yordanova J, Kolev V, Rosso O A.Wavelet entropy analysis of event-related potentials indicates modalityindependent theta dominance [ J ]. Journal of Neuroscience Methods, 2002, 117 ( 1 ) : 99-109.
  • 9Maeda Y, Tsutumi S, Minoura M, et al.An expert system for designing removable partial dentures: Preliminary report [ J ].Journal of the Osaka University Dental School ,1985 ( 25 ) :79-84.
  • 10Gaetano D C, Valentina B. Reward system and addiction: What dopamine does and doesn't do [ J ]. Current Opinion in Pharmacology, 2007,7 ( 1 ) : 69-76.

共引文献12

同被引文献37

  • 1蒋正言.基于脑电信号相干性分析的阿尔兹海默病诊断的研究[J].传感技术学报,2004,17(3):363-366. 被引量:5
  • 2李旭东,焦劲松,王桂芝,汪仁斌,王国相,孙少杰,荣培.阿尔茨海默病患者REM睡眠期脑电活动研究[J].临床神经电生理学杂志,2004,13(4):206-209. 被引量:4
  • 3Garn H, Waser M, Deistler M, et al. Quantitative EEG in Alzheimer' s disease: Cognitive state, resting state and asso- ciation with disease severity. Int J Psychophysiol, 2014, 93 (3) : 390-397.
  • 4Babiloni C, Visser PJ, Frisoni G, et al. Cortical sources of resting EEG rhythms in mild cognitive impairment and subjec- tive memory complaint. Neurobiol Aging, 2010, 31 ( 10 ) : 1787-1798.
  • 5Yang AC, Wang S J, Lai KL, et al. Cognitive and neuropsy- chiatric correlates of EEG dynamic complexity in patients with Alzheimer' s disease. Prog Neumpsychopharmacol Bid Psychi- atry, 2013, 47(2) : 52-61.
  • 6Knyazeva MG, Carmeli C, Khadivi A, et al. Evolution of source EEG synchronization in early Alzheimer' s disease. Neurobiol Aging, 2013, 34 (3) : 694-705.
  • 7Ab6solo D, Hornero R, Espino P, et al. Electroencephalo- gram background activity characterization with approximate en- tropy and auto mutual information in Alzheimer' s disease pa- tients. Conf Proc IEEE Eng Med Biol Soc, 2007, 2007 : 6192-6195.
  • 8Babiloni C, Lizio R, Marzano N, et al. Brain neural syn- chronization and functional coupling in Alzheimer' s disease as revealed by resting state EEG rhythms. Int J Psychophysiol, 2016, 103: 88-102.
  • 9Babiloni C, Lizio R, Carducci F, et al. Resting state corti- cal electroencephalographic rhythms and white matter vascular lesions in subjects with Alzheimer' s disease: an Italian multi center study. J Alzheimers Dis, 2011, 26 (2) : 331- 346.
  • 10Babiloni C, Carducci F, Lizio R, et al. Resting state corti- cal electroencephalographic rhythms are related to gray matter volume in subjects with mild cognitive impairment and Alzhei- mer's disease. Hum Brain Mapp, 2013, 34(6) : 1427-1446.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部