期刊文献+

基于区间技术的模型确认方法及应用 被引量:7

Model Validation Method and Its Application Based on the Interval Techniques
下载PDF
导出
摘要 提出一种应用于试验数据较少的模型确认方法,阐述模型确认的通用实施步骤和确认试验的作用。用区间变量量化模型的不确定量,使用区间算法求解数值模型的响应结果。以区间数值计算结果和试验结果的累计分布函数之间的面积为基础,计算准则参数并评价确认结果。针对不能满足确认指标的模型参数,建立以确认指标作为优化目标,试验参数作为约束条件的优化模型。通过求解优化问题,可获得模型参数的修正值。将方法分别应用在圣地亚静力学问题和圣地亚热传导问题的模型确认中,经过模型确认和修正,获得了可信的预测结果。 A model validation approach used to less experimental data is presented. The application process and function of validation experiment are introduced. Model uncertainty is quantified by interval variables and interval arithmetic is used to solve the computational model equation. Based on the area between the measured and calculated system response quantities' cumulative distribution functions, a validation metric is provided and validation result will be assessed. When the validation requirement is not met, an optimization-based method is proposed to calibrate the model parameter. In this optimization model, the validation requirement is taken as the optimization object and the experimental results are used as the constraint condition. The Sandia static frame problem and Sandia thermal challenge problem are presented to demonstrate the effectiveness of the present method.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2014年第14期177-184,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金(51175160) 湖南省自然科学创新研究基金(12JJ7001)资助项目
关键词 模型确认 区间算法 模型修正 圣地亚静力学问题 圣地亚热传导问题 model validation interval arithmetic model calibration Sandia static frame challenge problem Sandia thermal challenge problem
  • 相关文献

参考文献24

  • 1American Society of Mechanical Engineers. ASME V&V 10-2006, guide for verification and validation in computational solid mechanics[S]. New York: ASME, 2006.
  • 2American Society of Mechanical Engineers. ASME V&V 20-2009, standard for verification and validation in computational fluid dynamics and heat transfer[S]. New York: ASME, 2009.
  • 3American Society of Mechanical Engineers. ASME V&V 10.1-2012, an illustration of the concepts of verification and validation in computational solid mechanics[S]. New York: ASME, 2012.
  • 4BAYARRI M J, BERGER J O, PAULO R, et al. A framework for validation of computer models[J]. Technometrics, 2007, 49(2): 138-154.
  • 5BRANDYBERRY M D. Thermal problem solution using a surrogate model clustering technique[J]. Comp.uter Methods in Applied Mechanics and Engineering, 2008, 197(29-32): 2390-2407.
  • 6FERSON S, OBERKAMPF W L, G1NZBURG L. Model validation and predictive capability for the thermal challenge problem[J]. Computer Methods in Applied Mechanics and Engineering , 2008 , 197(29-32): 2408-2430.
  • 7HILLS R G, DOWDING K J. Multivariate approach to the thermal challenge problem[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(29-32): 2442-2456.
  • 8KENNEDY M C, HAGAN A O. Bayesian calibration of computer models[J]. Journal of the Royal Statistical Society, 2001, 63. 425-464.
  • 9OBERKAMPF W L, ROY C J. Verification and validation in scientific computing[M]. New York: Cambridge University Press, 2011.
  • 10魏发远.复杂系统仿真模型的分层确认[J].计算机仿真,2007,24(7):82-85. 被引量:5

二级参考文献149

共引文献168

同被引文献48

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部