期刊文献+

粤西三座重要供水水库沉积物营养盐负荷与重金属污染特征 被引量:20

Characteristics of sediment Nutrients loading and heavy metals pollution in three important reservoirs from the west coast of Guangdong province, south China
下载PDF
导出
摘要 为揭示粤西3座供水水库(高州水库、鹤地水库、大水桥水库)沉积物营养盐负荷及重金属污染特征,于2008年6月在各水库大坝前湖泊区采集柱状沉积物,运用SMT法、碱性过硫酸钾消解法、烧失法和ICP-MS法分别测定其柱状沉积物中氮磷营养盐、有机质和7种重金属(Cu、Pb、Zn、Cd、Ni、Cr与Hg)的含量,并采用潜在生态风险指数法对表层重金属污染的潜在生态风险进行评价,同时通过相关性分析重金属的可能来源。结果表明:3座水库沉积物总氮质量分数为1.13~3.37 mg·g-1,有机质为11.83~20.37 mg·g-1,其表层总氮、有机质的质量分数大小顺序为高州水库〉大水桥水库〉鹤地水库,总磷的质量浓度在0.22~0.77 mg·g-1之间,其表层总磷质量分数大小顺序为高州水库〉鹤地水库〉大水桥水库,在垂直剖面上,总氮、总磷与有机质的质量分数在16 cm至表层沉积物垂直断面显著高于其他断面,表明近些年来水库内源营养盐负荷逐渐加重。重金属质量分数平均值均高于广东省土壤环境背景值,总体呈现随深度增加而降低的趋势,但3座水库间重金属质量分数差异较大,其中鹤地和高州水库的Zn和Pb污染相对严重(质量分数分别为Zn:353.15、693.35 mg·kg-1;Pb:74.51、127.91 mg·kg-1),大水桥水库的Cr和Ni污染相对严重(质量分数分别为Cr:238.69 mg·kg-1;Ni:251.06 mg·kg-1)。潜在生态风险评价表明,3座水库Cd和Hg具有高的生态危害,应引起重视,其他重金属则处于轻微的生态危害等级。同时沉积物高有机质的质量浓度经矿化分解可能加剧水体重金属生态危害。根据相关性分析和其他相关资料可知,粤西农业区大量化肥农药面源污染汇入造成水库初级生产力提高并最终沉降可能是沉积物营养盐、有机质与重金属的主要来源。 Sediment cores were sampled from the three reservoirs of west area of Guangdong province in June, 2008. Total nitrogen (TN), total phosphorus (TP), organic matter (OM) and the main heavy metals including Cu, Pb, Zn, Cd, Ni, Cr and Hg in sedimentcolumns were determined by SMT, Alkaline Persulfate Digestion, loss on ignition Method, ICP-MS, respectively. Pollution of heavy meteals was evaluated by potential ecological risk index, and the possible sources of heavy metals were estimated with correlation analysis. The results showed that contents of total nitrogen TN and OM ranged from 1.13-3.37, 11.83-20.37 mg·g-1, respectively. TP ranged from 0.22-0.77 mg·g-1, the total nitrogen (TN) and the organic matter (OM) content in the surface sediments followed the order: Gaozhou Reservoir 〉 Dashuiqiao Reservoir 〉 Hedi Reservoir, whereas, total phosphorus (TP) is: Gaozhou Reservoir 〉 Hedi Reservoir 〉 Dashuiqiao Reservoir. From the depth of 16 cm to the surface in sediment columns, TN, TP and OM were significantly higher than others, and implied that internal loading getting heavier in recent years. The content of heavy metals was higher than the background values of soils in Guangdong province, and decreased with increasing depth, but there were great variations among the reservoirs. Zn and Pb polluted seriously in Hedi Reservoir and Gaozhou Reservoir (Zn: 353.15, 693.35 mg·kg-1; Pb: 74.51, 127.91 mg·kg-1), where as Cr and Ni showed serious pollution in Dashuiqiao Reservoir (Cr: 238.69 mg·kg-1; Ni: 251.06 mg·kg-1). We introduced risk index (RI) to evaluate the potential ecological risk of heavy metals, and results showed that there was low ecological risk except for Cd and Hg in the three reservoirs. However, mineralization of OM would result in heavy metals release into waterbody and increase ecological risk of heavy metals. Based on the correlation analysis, over input of fertilizer and pesticide would be the main source for the primary productivity and heavy metals, and settling to sediment in west area of Guangdong province.
出处 《生态环境学报》 CSCD 北大核心 2014年第5期834-841,共8页 Ecology and Environmental Sciences
基金 广东省水利科技创新项目(201102)
关键词 粤西地区 水库 沉积物 营养盐 重金属 West area of Guangdong Reservoirs Sediment Nutrients Heavy metals
  • 相关文献

参考文献29

  • 1ADHIKARI S, GHOSH L, GIRI B S, et al. 2009. Distributions of metals in the food web of fish ponds of Kolleru Lake, India [J]. Ecotoxicology and Environmental Safety, 72(4): 1242-1248.
  • 2BURFORD M A, GREEN S A, COOK A J, et al. 2012. Sources and fate of nutrients in a subtropical reservoir[J]. Aquatic sciences, 74(1): 179-190.
  • 3FILGUEIRAS A V, LAVILLA I, BENDICHO C. 2002. Comparison of the standard SM&T sequential extraction method with small scale ultrasotmd-assisted single extractions for metal partitioning in sediments [J]. Analytical and bioanalytical chemistry, 374(1): 103-108.
  • 4HAKANSON L. 1980. An ecological risk index for aquatic pollution control. A sediment ological approach [J]. Water research, 14(8): 975-1001.
  • 5KAUSHIK A, KANSAL A, SANTOSH, et al. 2009. Heavy metal contamination of river Yamuna, Haryana, India: Assessment by Metal Enrichment Factor of the Sediments [J]. Journal of Hazardous Materials, 164(1): 265-270.
  • 6Loska K, Wiechula D. 2003. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir [J]. Chemospher, 51: 723-733.
  • 7SHARMA S K, SUBRAMANIAN V. 2010. Source and distribution of trace metals and nutrients in Narmada and Tapti river basins, India [J]. Environmental Earth Sciences, 61(7): 1337-1352.
  • 8VAROL M, SEN B. 2012. Assessment of nutrient and heavy metal contamination in surface water and sediments of the upper Tigris River Turkey [J]. Catena, 92: 1-10.
  • 9YUAN H Z, SHEN J, LIU E F, et al. 2011. Assessment of nutrients and heavy metals enrichment in surface sediments from Taihu Lake, a eutrophic shallow lake in China [J]. Environmental geochemistry and health, 33(1): 67-81.
  • 10ZHU X F, JI H B, CHEN Y, et al. 2013. Assessment and sources of heavy metals in surface sediments of Miyun Reservoirs, Beijing [J].Environ Monit Assess, 185: 6049-6062.

二级参考文献211

共引文献1348

同被引文献449

引证文献20

二级引证文献201

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部