期刊文献+

Stress/strain aging mechanisms in Al alloys from first principles 被引量:1

铝合金应力/应变时效机制的第一性原理研究(英文)
下载PDF
导出
摘要 First-principles based calculations were carried out to explore the possible mechanisms of stress/strain aging in Al alloys. Potential effects of temperature and external stress/strain were evaluated on the solvus boundary of Al3Se in Al-Sc alloy, and the interface energy of Al/θ" in Al-Cu alloys. Results show that applying tensile strain/stress during conventional aging can significantly decrease the solubility entropy, by red-shifting the phonon DOS at high states. The resulted solvus boundary would shift up on the phase diagram, suggesting a reduced solubility limit and an increased maximum possible precipitation volume of AlaSc in Al-Sc alloy. Moreover, the applied strain/stress has different impacts on the formation energies of different orientated Al/θ" interfaces in Al-Cu alloys, which can be further exaggerated by the Poisson effect, and eventually affect the preferential precipitation orientation in Al-Cu alloy. Both mechanisms are expected to play important roles during stress/strain aging. 基于第一性原理计算方法探讨了铝合金应力/应变时效的可能机制,综合评估了时效温度和外加应力/应变对Al-Sc合金中Al3Sc固溶边界和Al-Cu合金中Al/θ''界面能的潜在影响。计算结果表明:在传统时效过程中引入外加拉应力/应变,声子态密度在高态区有红移现象,可以明显降低溶解熵;同时,导致相图中固溶线上移,表明外加拉应力/应变可降低Al3Sc在Al-Sc合金中的极限固溶度,从而增加析出相的最大可能体积分数。外加应力/应变对Al-Cu合金中不同取向的Al/θ''界面形成能有不同程度的影响,这种差别可以通过泊松效应进一步放大,从而影响到Al-Cu合金中析出相的择优取向。这2种机制在应力/应变时效中均可能发挥重要作用。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2130-2137,共8页 中国有色金属学报(英文版)
基金 Project(51171211)supported by the National Natural Science Foundation of China Project(2014CB644001-2)supported by the National Basic Research Program of China
关键词 stress aging solubility limit interface energy FIRST-PRINCIPLES 应力时效 极限固溶度 界面能 第一性原理
  • 相关文献

参考文献1

二级参考文献23

  • 1HARDY H K, HEAL T J. Report on precipitation[J]. Progress in Metal Physics, 1954, 5: 143-278.
  • 2FRANK W C4 MARTHA G. Precipitation hardening in the first aerospace aluminum alloy: The wright flyer crankcase[J]. Science, 1994, 266(5187): 1015-1017.
  • 3SON S K, TAKEDA M, MITOME M, BANDOB Y, ENDO T. Precipitation behavior of an AI-Cu alloy during isothermal aging at low temperatures[J]. Materials Letters, 2005, 59(6): 629-632.
  • 4TAKEDA M, MAEDA Y, YOSHIDA A, YABUTA K, KONUMA S, ENDO T. Discontinuity of G.P.( I ) zone and 0' phase in an A1-Cu alloy[J]. Scripta Materialia, 1999, 41 (6): 643-649.
  • 5HOSFORD W F, AGRAWAL, SUPHAL P. Effect of stress during aging on the precipitation of 0' in Al-wt Pct Cu[J]. Metallurgical and Materials Transactions A, 1975, 6(3): 487-491.
  • 6ETO T, NACHI M, MORI T. Study of G P. zones in A1-Cu alloys by stress aging[J]. Transactions of the Japan Institute of Metals, 1979, 20(8): 459-467.
  • 7ZHU A W, STARKE Jr E A, JR. Stress aging of Al-xCu alloy:Experiments[J]. Acta Materialia, 2001, 49(12): 2285-2295.
  • 8HARGARTER H, LYTTLE M T, STARKE E A. Effects of preferentially aligned precipitates on plastic anisotropy in A1-Cu-Mg-Ag and A1-Cu alloys[J]. Materials Science and Engineering A, 1998, 257(1): 87-99.
  • 9ZHU A W, STARKE Jr E A. Stress aging of A1-Cu alloys: Computer modeling~J]. Acta Materia|ia, 2001, 49(15): 3063-3069.
  • 10HOSFORD W F, AGRAWAL S P. Authors' reply[J]. Metallurgical and Materials Transactions A, 1976, 7(5): 771-772.

共引文献1

同被引文献62

  • 1ODETTE G R, AL1NGER M J, WIRTH B D. Recent developments in irradiation-resistant steels[J]. Annual Review of Material Research, 2008, 38: 471-503.
  • 2WU Y, HANEY E M, CUNNINGHAM N J, ODETTE G R. Transmission electron microscopy characterization of the nanofeatures in nanostructttred ferritic alloy MA957[J]. ActaMaterialia, 2012, 60: 3456-3468.
  • 3WANG M, ZHOU Z J, SUN H Y, HUH L, LI S F. Microstructural observation and tensile properties of ODS-304 austenitic steel[J]. Materials Science and Engineering A, 2013, 559: 287-292.
  • 4HOELZER D T, ODETTE G R. Regular and ODS ferritic steel as structural materials for power plant HHFCs[C]//International HHFC Workshop on Readiness to Proceed from Near Term Fusion Systems to Power Plants, La Jolla, CA: UCSD, 2008.
  • 5SAKASEGAWA H, CHAFFRON L, LEGENDRE F, BOULANGER L, COZZIKA T, BROCQ M, DE CARLAN Y. Correlation between chemical composition and size of very small oxide particles in the MA957 ODS ferritic alloy[J]. Journal of Nuclear Materials, 2009, 384(2): 115-118.
  • 6ALINGER M J, ODETTE G R, HOILZER D T. On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostuctured ferritic alloys[J]. Acta Materialia, 2009, 57: 392-406.
  • 7OHNUMA M, SUZUKI J, OHTSUKA S, KIM S-W, KAITO T, INOUE M, KITAZAWA H. A new method for the quantitative analysis of the scale and composition of nanosized oxide in 9Cr-ODS steel[J]. Acta Materialia, 2009, 57: 5571-5581.
  • 8HIRATA A, FUJITA T, WEN Y R, SCHNEIBEL J H, LIU C T, CHEN M W. Atomic structure of nanoclusters in oxide-dispersion-strengthened steels[J]. Nature Materials, 2011, 10: 922-926.
  • 9CUNN1NGHAM N J, ODETTE G R, STERGAR E. Further atom probe tomography studies of nanostructured ferritic alloy MA957 in three conditions: Fusion reactor materials program semiannual progress report[R]. DOE/ER-0313/49, 2010: 11-16.
  • 10ODETTE G R, HOELZER D T. Irradiation-tolerant nanostructured ferritic alloys: Transforming helium from a liability to an asset[J]. JOM, 2010, 62: 84-92.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部