期刊文献+

基于经验模态分解及小波变换的炸药NQR信号处理 被引量:8

Processing of explosive nuclear quadrupole resonance signals based on empirical mode decomposition and wavelet transform
下载PDF
导出
摘要 为解决炸药NQR信号去噪问题,针对NQR信号非线性与非平稳性特点,提出基于经验模态分解及小波变换联合的信号去噪方法。据实验测试的黑索金NQR信号对所提方法进行去噪性能分析。结果表明该方法在保留信号有用信息的前提下可有效去除噪声,从而提高信噪比、克服小波阈值去噪与直接EMD去噪缺陷,自适应性良好,为有效的炸药NQR信号去噪方法。 Explosive nuclear quadrupole resonance( NQR) signals have nonlinear and non-stationary characteristics. In order to solve the NQR signal de-noising problem,a de-noising method based on empirical mode decomposition( EMD) and wavelet transform was proposed. The original NQR signals of RDX detected by experiment were used to analyze the de-noising performance. The results indicate that the proposed method can eliminate the noise effectively and well preserve the effective information of original signals. Meanwhile,the method can overcome the shortcomings of wavelet threshold de-noising and direct EMD de-noising,and improve the signal-to-noise ratio. The method has excellent adaptability,and was proved to be an effective de-noising way for NQR signals.
出处 《振动与冲击》 EI CSCD 北大核心 2014年第16期183-187,共5页 Journal of Vibration and Shock
关键词 炸药探测 核四极矩共振 经验模态分解 小波阈值 信号去噪 explosive detection nuclear quadrupole resonance empirical mode decomposition wavelet threshold signal de-noising
  • 相关文献

参考文献15

  • 1Mozzhukhin G V. Three-frequency composite multipulse nuclear quadrupole resonance technique for explosive detection [ J ]. Applied Magnetic Resonance, 2012, 43 (4) : 547 - 556.
  • 2Rati R, Pink R H, Scheieher R H, et al. Nuclear quadrupole interactions in nuclear quadrupole resonance deteetion of energetic and controlled materials: theoretical study[J]. Applied Magnetic Resonanee, 2012, 43(4): 591 -617.
  • 3李康宁,俞硕,李兴,张向阳.核四极共振技术在黑火药探测中的研究[J].核科学与工程,2011,31(3):270-273. 被引量:1
  • 4Peshkovsky A S, Cattena C J, Cerioni L M, et al. Noise- resilient multi-frequency surface sensor for nuclear quadrupole resonance [ J ]. Journal of Magnetic Resonance, 2008, 194 (2) : 222 - 229.
  • 5Mozzhukhin G V, Rameev B Z, Dogan N, et al. Secondary signals in two-frequency nuclear quadrupole resonance on 14N nuclei with I = 1 [J]. Journal of Magnetic Resonance, 2008, 193(1) : 49 -53.
  • 6李志强,金余恒.基于核电四极矩共振技术的爆炸物检测系统的数据处理及信号识别算法[J].核电子学与探测技术,2004,24(6):586-590. 被引量:5
  • 7赵振维,娄扬,金燕波,毛云志.基于自适应滤波技术的NQR信号处理[J].电波科学学报,2008,23(3):429-433. 被引量:12
  • 8Mazzhukhin G V, Molchanov S V. Application of the wavelet transform for detecting signals of nuclear quadrupole resonance[ J ]. Russian Physics Journal, 2005, 48 ( 1 ) :53 -56.
  • 9杨振磊,徐更光,王振华,刘科种,郝凤龙.基于小波变换的炸药NQR信号处理[J].原子能科学技术,2010,44(3):354-357. 被引量:2
  • 10Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hibert spectrum for nonlinear and non- stationary time series analysis[ J]. Pro R Soc London, Set A, 1998, 454:903 - 995.

二级参考文献39

共引文献67

同被引文献64

  • 1段晨东,姜洪开,何正嘉.一种基于信号相关性检测的自适应小波变换及应用[J].西安交通大学学报,2004,38(7):674-677. 被引量:5
  • 2孙延奎.小波分析及其应用[M].北京:机械工业出版社,2004.
  • 3刘卫东,刘尚合,胡小锋,王雷.小波阈值去噪函数的改进方法分析[J].高电压技术,2007,33(10):59-63. 被引量:67
  • 4杨永峰,吴亚锋.经验模态分解在振动分析中的应用[M].北京:国防工业出版社,2013.
  • 5NORDEN E.HUANG,ZHENG SHEN,STEVEN R LONG,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proc Roy Soc Lond A,1998,454:903-995.
  • 6Zhaohua Wu,and Norden E Huang.Ensemble empirical mode decomposition:a noise-assisted data analysis method[J].Advances in Adaptive Data Analysis,2009,1:1-41.
  • 7Manuel Blanco-Velasco,Binwei Weng,Kenneth E Barner.ECG signal denoising and baseline wander correction based on the empirical mode decomposition[J].Computers in Biology and Medicine,2008,38:1-13.
  • 8Zhaohua Wu,and Norden E.Huang.Ensemble Empirical Mode Decomposition:a noise-assisted data analysis method [J].Advances in Adaptive Data Analysis,2009,I:1-41.
  • 9TORRES M E,COLOMINAS M A,SCHLOTTHAUER G,et al.A complete ensemble empirical mode decomposition with adaptivenoise[C]//IEEE International Conference on Speech and Signal- Processing(ICASSP),May,22-27,2011,Prague,Czech.2011:4144-4147.
  • 10Contreras J,Espiola R,Nogales F J,et al.ARIMA models to predict next-day electricity prices[J].Power Systems,IEEE Transactions on,2003,18(3):1014-1020.

引证文献8

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部