期刊文献+

潮流能水轮机水动力分析方法 被引量:5

Numerical Methods of Hydrodynamic Analysis on Tidal Current Turbines
下载PDF
导出
摘要 潮流水轮机是潮流能转换装置的核心装备,潮流水轮机水动力性能和载荷则是潮流能转换装置总体设计和结构设计的基本依据。到目前为止,流动分离、流固耦合、空化以及复杂环境条件等强非线性因素对潮流水轮机水动力的影响仍然是一个值得研究的问题。本文基于哈尔滨工程大学在潮流能利用技术领域多年的研究成果,对潮流水轮机在均匀流水动力分析和流固耦合分析的不同数值方法及相关计算结果进行了回顾和对比分析,并提出了一种水轮机波浪载荷的计算模型。 The tidal current turbine is kernel equipment of the tidal current energy conversion(TCEC) device,with its hydrodynamic performance and loads being the basis of the overall and structural design of the TCEC device. So far, the effects of some nonlinear factors, such as flow separation, fluid-structure interaction, vacuoles and complex environmental conditions, on the turbine hydrodynamic performance are still worth further research.Based on the academic achievements in the field of tidal current energy technology obtained by the Harbin Engineering University, review and comparative analysis are conducted on the numerical methods and corresponding results in uniform flow hydrodynamic analysis and fluid-structure interaction analysis of tidal current turbine. Finally, a numerical model is presented on the wave loads of turbines.
出处 《海洋技术》 北大核心 2014年第4期105-111,共7页 Ocean Technology
基金 国家海洋可再生能源专项基金资助项目(ZJME2010GC01 ZJME2010CY01 GHME2010GC02 GHME2013ZC01-2)
关键词 潮流水轮机 水动力计算 水动力导数 流固耦合 波浪载荷 tidal current turbine hydrodynamic analysis hydrodynamic derivative fluid-structure interaction wave loads
  • 相关文献

参考文献11

  • 1张亮,李新仲,耿敬,张学伟.潮流能研究现状2013[J].新能源进展,2013,1(1):53-68. 被引量:82
  • 2W N Sullivan,T M Leonard. A Computer Suhrnutine for Estimating Aerodynamic Blades Loads on Darrieus Vertical Axis Wind Tur- bines [R]. Sandia Laboratory Repl. SAND 80-2047, 1980.
  • 3J H Strickland. The Darrieus Turbine: A Performance Prediction Model Using Multiple Streamtubes [R]. SAND75-0431, 1975: 1-31.
  • 4lan Paraschivoiu. Aerodynamic Loads and Performance of the Darrieus Rotor [J]. Energy, 1981 (6) : 406-421.
  • 5D J Sharpe,London Freris. Wind Turbine Aerodynamics [M] .Prentice Hall: Wind Energy Conversion System, 1990:54-118.
  • 6R E Wilson. Vortex Sheel Analysis of the Giromill. Trans. ASME [J]. Fluids Engineering, 1978,100(3):340-342.
  • 7D Vandanberghe,E Dick. A Free Vortex Simulation Method tor the Straight Bladed Vertical Axis Wind Turbine [J]. Journal of Wind Engineering and Industrial Aerodyneamics, 1987,26(3):307-324.
  • 8J H Slrickland, B T Webster, T Nguyen. A Vortex Model of the Darrieus Turbine: an Analylieal and Experimental Study [J]. Trans ASM E J Fluids Engng, 1979,101:500-505.
  • 9F L Ponta, P M Jacovkis. A Vortex Model for Darrieus Turbine Using Finite Element Techniques [J]. Renewable Energy, 2001.24:1 - 18.
  • 10L B Wang, L Zhang. N D Zeng. A Potential Flow 2-D Vortex Panel Model: Applieations, to the Vertical-Axis Straight-Blade, Tidal Turbine[J]. Energ? Conversion and Management. 2007.48 : 454-461.

二级参考文献10

  • 1科技部;国家发展与改革委员会.可再生能源与新能源国际科技合作计划[M],2007.
  • 2英国石油.BP世界能源统计[M],2010.
  • 3中国科学技术协会;中国能源研究会.能源科学技术学科发展报告[R]北京:中国科学技术出版社,2008.
  • 4王传岜;卢苇.海洋能资源分析方法及存储评估[R]北京:海洋出版社,2009.
  • 5李凤来;张亮.潮流能利用技术的发展现状与研究方向[A]北京,2000.
  • 6李允武.海洋能源开发[M]北京:海洋出版社,2008101-138.
  • 7Ocean Energy Systems. Annual Roport:Implementing Agreement on Ocean Energy Systems[R].The Executive Committee of Ocean Energy Systems,2009.
  • 8MEM (UK) Limited. Marine Energy Global Technology Review[EB/OL].http://www.marine-energymatters.com,.
  • 9刘宏伟,李伟,林勇刚,马舜.水平轴螺旋桨式海流能发电装置模型分析及试验研究[J].太阳能学报,2009,30(5):633-638. 被引量:13
  • 10游亚戈,李伟,刘伟民,李晓英,吴峰.海洋能发电技术的发展现状与前景[J].电力系统自动化,2010,34(14):1-12. 被引量:195

共引文献81

同被引文献35

  • 1BATTEN W M J, BAHAJ A S , MOLLAND A F, et al. Hydrodynamics of marine current turbines [ J ]. Renewable Energy, 2006, 31 : 249-256.
  • 2BATYEN W M J, BAHAJ A S , MOLLAND A F, et al. The prediction of the hydrodynamic performance of marine current turbines [ J]. Renewable Energy,2008,33 : 1085-1096.
  • 3LEE Ju Hyun,KIM Dong Hwan, RHEE Shin Hyung, et al. Computational and experimental analysis for horizontal axis marine current turbine design[ C ]//Second International Symposium on Marine Propulsors. Hamburg, Germany, 2011.
  • 4JO Chul hee, YIM Jin young, LEE Kang hee, et al. Performance of horizontal axis tidal current turbine by blade configuration [ J ].Renewable Energy, 2012,42 : 195-206.
  • 5LAWSON Michael J, LI Ye, SALE Danny C. Development and verification of a computational fluid dynamics model of a horizontal-axis tidal current turbine [ C]//Proceedings of the 30th International Conference on Ocean, Offshore, and Arctic Engineering. 2011 : OMAE2011-49863.
  • 6BIR G S,LAWSON M J, LI Ye. Structural design of a horizontal-axis tidal current turbine composite blade[ C]//Presented at the ASME 30th International Conference on Ocean, Offshore, and Arctic Engineering. Rotterdam,The Netherlands,2011.
  • 7STALLARD T, COLLINGS R, FENG T, et al. Interactions between tidal turbine wakes: experimental study of a group of three-bladed rotors [ J ]. Phil. Trans. R. Soc. A, 2013,371 ( 1985 ) : 1-5. doi : 10.1098/rsta. 2012. 0519.
  • 8HARRISON M E, BAqTEN W M J, MYERS L E, et al. Comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines[ J]. lET Renew Power Generation, 2010,5(8) :613-627.
  • 9MYERS L E, BAHAJ A S. An experiment investigation simulating flow effects in first generation marine current energy converter arrays[ J]. Renewable Energy,2012,37:28-36.
  • 10MYERS L E,BAHAJ A S. Experiment analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators[J]. Ocean Engineering,2010,37:218-227.

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部