摘要
PS-PAMAM-IDA chelating resins were prepared by low-generations of polyamidoamine(PAMAM) and then chloroacetic acid functionalizing commercially available ammoniated polystyrene matrix, to preconcentrate Ni2+ from synthetic aqueous samples. Different generations of PAMAM were used to obtain different chelating resins, PS-IDA, PS-1.0G PAMAM-IDA and PS-2.0G PAMAM-IDA. The synthesized resins were characterized by FTIR and elemental analysis. The effect of solution pH, kinetic studies, resin loading capacity, matrix effects etc., on metal ion adsorption to adsorbent phase, were studied by batch method. The PS-1.0G PAMAM-IDA resin was the most excellent adsorbents, with a maximum adsorption capacity of(24.09±1.79) mg/g for Ni2+ ion at pH=7. The interpretation of the equilibrium data was given by Langmuir isotherms model, and the correlation coefficient values for PS-IDA, PS-1.0G PAMAM-IDA and PS-2.0G PAMAM-IDA resins were 0.992, 0.994 and 0.987, respectively.
PS-PAMAM-IDA chelating resins were prepared by low-generations of polyamidoamine(PAMAM) and then chloroacetic acid functionalizing commercially available ammoniated polystyrene matrix, to preconcentrate Ni2+ from synthetic aqueous samples. Different generations of PAMAM were used to obtain different chelating resins, PS-IDA, PS-1.0G PAMAM-IDA and PS-2.0G PAMAM-IDA. The synthesized resins were characterized by FTIR and elemental analysis. The effect of solution pH, kinetic studies, resin loading capacity, matrix effects etc., on metal ion adsorption to adsorbent phase, were studied by batch method. The PS-1.0G PAMAM-IDA resin was the most excellent adsorbents, with a maximum adsorption capacity of(24.09±1.79) mg/g for Ni2+ ion at pH=7. The interpretation of the equilibrium data was given by Langmuir isotherms model, and the correlation coefficient values for PS-IDA, PS-1.0G PAMAM-IDA and PS-2.0G PAMAM-IDA resins were 0.992, 0.994 and 0.987, respectively.
基金
Project(51074192)supported by the National Natural Science Foundation of China