摘要
把Hlder空间上的Privalov定理推广到LPS(D)空间上,证明当跳跃函数f(t)∈LPS∩LP时,分区解析函数F(z)=1/2πi∫Df(t)/t-zdt,zD的内部分支属于Besov空间,而F(z)在边界两边的正负边值F+(t)、F-(t)以及f(t)的奇异积分(SF)(t)均属于LPS(D)空间.
In this paper,the classic Privalov theorem in H?lder spaces was extended to the case of LPS(D). It was proved that if the leap data f( t)∈LP(D)∩LPS(D),the inner exponent of the sectional analytic function F( z)= 12πi∫D f( t)t -zdt,zD belongs to the Basov space. Moreover,F+( t)、F-( t)the boundary values of F( z)on both sides ofD and( SF)( t),the singular integral of f( t)belong to LPS(D).
出处
《重庆文理学院学报(社会科学版)》
2014年第5期14-16,共3页
Journal of Chongqing University of Arts and Sciences(Social Sciences Edition)
基金
国家自然科学基金资助项目(11226086)