摘要
基于13个钢-聚氨酯复合管试件的轴压试验,研究聚氨酯在钢复合管中的应用。结果表明,在承受轴向压力下,钢-聚氨酯复合管轴压试件破坏时呈多折腰鼓形;钢管发生局部屈曲后,受到聚氨酯材料的约束可以有效延缓试件屈曲发生时间与变形程度;整个加载过程,聚氨酯与钢材的黏结性能良好,两者未发生剥离现象。从试件荷载-位移曲线以及试验过程可得:荷载-位移曲线一般由弹性、弹塑性、下降和强化阶段组成,表明复合管具有很好的延性与强度储备,能有效抵抗地震等动力荷载的作用。随着L/D的减小,试件的极限荷载有增大的趋势,但是其增幅不明显。套箍系数ξ是影响试件性能的重要因素,当ξ值提高时试件承载力会明显提高;反之亦然。
Experiments on axial compression behaviors of 13 steel-polyurethane composite tube (SPCT) specimens were conducted to study the application of polyurethane to steel composite tubes. The results show that, under the axial compression, the SPCT was shaped like a bow drum. When local buckling occurred in the steel tube, polyurethane could effectively delay the buckling and deformation. Over the whole loading process, the bonding performance between polyurethane and steel was so good that peeling did not occur. It can be seen from the load-displacement curve and test process that the load-displacement curve is generally composed of elastic, elastic-plastic, descending, and strengthening phases, indicating that the SPCT has sound ductility and a reserve of strength to resist dynamic loads such as earthquakes. With the decrease of L / D, the limiting load of the specimen had an increasing trend, but the trend was not significant. The confining parameter ξ is an important factor influencing the specimen. When ξ increased, the specimen’ s carrying capacity increased significantly, and vice versa.
出处
《河海大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第4期337-341,共5页
Journal of Hohai University(Natural Sciences)
基金
国家自然科学基金(51108212)
福建省自然科学基金(2012J01240)
关键词
钢
聚氨酯复合管
轴压性能
钢管长径比
套箍系数
steel-polyurethane composite tube
axial compression behavior
length-diameter ratio of steel tube
confining parameter