期刊文献+

基于观测器的LMI振动控制算法 被引量:1

Observer-based LMI vibration control algorithm
下载PDF
导出
摘要 针对基于观测器的LMI控制器设计中一个线性矩阵不等式中出现双变量的问题,提出一种赋初值迭代求解方法。考虑到双变量中一个为正定矩阵变量、一个为标量的特点,为了保证迭代收敛性和满足矩阵正定的要求,把正定矩阵变量作为初值赋予对象。仿真分析发现所设计的控制器仅能保证控制趋势,达不到预期控制效果,为此提出了调节因子的概念。最后,以3层基准建筑物为例进行仿真分析,结果表明该方法是可行的。 In the design of an observer-based LMI (linear matrix inequality) controller, bivariate values appear in one linear matrix inequality. To solve this problem, we propose an initial value-iteration method in this paper. Of the bivariate values, one is a positive definite matrix variable and the other is a scalar. Considering these two characteristics, we take the positive definite matrix variable as the initial value, in order to ensure the astringency of the iteration and to meet the requirements of positive definite matrices. Simulation analysis shows that the designed controller can guarantee the control trend, which was far from the expected control result. We subsequently put forward the concept of a regulatory factor. As a case study, the simulation analysis of a three-storey benchmark building shows that the proposed method is feasible.
出处 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期342-345,共4页 Journal of Hohai University(Natural Sciences)
关键词 线性矩阵不等式 观测器 调节因子 振动控制 linear matrix inequality (LMI) observer regulatory factor vibration control
  • 相关文献

参考文献15

  • 1GONZALEZ R, FIACCHINI M, RODRIGUEZ F, et al. Adaptive control for a mobile robot under slip conditions using an LMI- based approach [J]. European Journal of Control, 2010, 16(2) :144-155.
  • 2KARIMI H R. Observer-based mixed H2/H∞ control design for linear systems with time-varying delays: an LMI approach[ J ]. International Journal of Control Automation and Systems, 2008, 6( 1 ) : 1-14.
  • 3韦俊青.基于状态观测器的不确定性线性系统鲁棒控制研究[D].广州:广东工业大学,2013.
  • 4SATHANANTHAN S, KNAP M J, STRONG A, et al. Robust stability and stabilization of a class of nonlinear discrete time stochastic systems : an LMI approach [ J ]. Applied Mathematics and Computation, 2012,219 (4) : 1988-1997.
  • 5YANG Xikai. Observer-based anti-windup compensator design for saturated control systems using an LMI approach [ J ]. Computer & Mathematics with Applications, 2012, 64(5) : 747-758.
  • 6ZHANG Qingjiang YE Sijun LI Yan WANG Xinmin.An Enhanced LMI Approach for Mixed H2/H∞ Flight Tracking Control[J].Chinese Journal of Aeronautics,2011,24(3):324-328. 被引量:7
  • 7ZHANG Kuanyu. Multi-objective control for stochastic model reference systems based on LMI approach and sliding mode control concept[J]. International Journal of Systems Science, 2013, 44(4) : 739-749.
  • 8李文章,吴凌尧,郭雷.基于LMI的结构振动鲁棒H∞控制[J].振动工程学报,2008,21(2):157-161. 被引量:11
  • 9KARIMI H R, GAO Huijun. LMI-based H-infinity synchronization of second-order neutral master-slave systems using delayed output feedback control[ J ]. International Journal of Control Automation and Systems, 2009, 7 (3) : 371-380.
  • 10BAI Mingchang. Robust control of uncertain time-delay systems via sliding mode control and LMI-H(infinity) technique [ J ]. Journal of Marine Science and Technology-Taiwan, 2008, 16( 1 ) : 1-7.

二级参考文献43

  • 1乔俊飞,张微敬,李武强.结构振动系统建模与控制的仿真研究[J].系统仿真学报,2001,13(z1):24-26. 被引量:2
  • 2蒋维,竺长安,张屹,林瑜恒.基于LMI算法的汽车半主动悬架系统集成设计[J].机械与电子,2005,23(3):31-33. 被引量:1
  • 3HENSON M A, MICHAEL A. Nonlinear model predictive control: current status and future directions [ J ]. Computer and Chemical Engineering, 1998,23 (2) : 187-202.
  • 4JELICIC Z D, PETROVACKI N. Optimality conditions and a solution scheme for fractional optimal control problems [ J]. Structural and Multidisciplinary Optimization, 2010,38(6) : 571-581.
  • 5MERRIKH-BAYAT F,AFSHAR M,KARIMI-GHARTEMANI M. Extension of the root-locus method to a certain class of fractional-order systems[ J ]. ISA Transactions, 2009,48 ( 1 ) : 48-55.
  • 6HAMAMCI S E. Stabilization using fractional-order PI and PID controllers[J]. Nonlinear Dynamics, 2008,51 (2) :329-343.
  • 7SILVA M F, MACHADO J A. Fractional order PIM joint control of legged robots[ J ]. Journal of Vibration and Control,2006,12(12) : 1483 -1501.
  • 8CAI Xin, LIU Fa-wang. Numerical simulation of the fractional-order control system[ J ]. Journal of Applied Mathematics and Computing, 2007,23(1/2) :229-241.
  • 9CAO Jun-yi, CAO Bing-gang. Design of fractional order controller based on particle swarm optimization [ J]. International Journal of Control, Automation and Systems, 2006,4 (6) : 775-781.
  • 10WEI Lin. Global existence theory and chaos control of fractional differential equations[ J]. J Math Anal Appl, 2007,33(2):709-726.

共引文献17

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部