摘要
为了实现对造纸原料的快速准确判别,收集了5种共40份原料品种的近红外光谱数据。通过MAF和一阶导数方法进行光谱数据预处理,用主成分方法对光谱数据进行压缩降维,分别利用Fisher算法和BP人工神经网络来建立原料近红外光谱判别模型,并对两种判别模型进行比较。结果表明:两种模型都能较好地进行造纸原料的近红外判别,且BP人工神经网络比Fisher判别函数在容错性上表现得更为优越,建立的模型用于种类判别时表现得更为稳健。
Forty examples of ifve kinds of papermaking raw material near infrared spectroscopy are prepared to discriminate the kind of papermaking raw material quickly and accurately. The NIRS of examples are pretreated by moving average filter and first derivative. Fisher algorithm and BP-ANN are introduced to establish the raw material discriminant model after using principle components analysis to compress spectral data and the two discriminant models are compared. The results indicate that two discriminant models can discriminate the kind of raw material precisely and BP artiifcial neural network is even more advantageous than the Fisher discriminant function in the performance of fault tolerance. What’s more, BP artiifcial neural network discriminant model is more robust than Fisher discriminant model in discriminating the kind of papermaking raw material.
出处
《中华纸业》
CAS
2014年第16期23-26,共4页
China Pulp & Paper Industry
基金
江苏省制浆造纸科学与技术重点实验室开放基金项目(201010)
关键词
造纸原料
近红外
BP人工神经网络
判别
papermaking raw material
near infrared spectroscopy
BP artiifcial neural network
discrimination