期刊文献+

海量数据处理过程中数据挖掘算法的应用 被引量:1

The Application of Data Mining in Processing Mass Data
下载PDF
导出
摘要 信息时代的快速发展带来的是信息总量呈现几何级数的增加,而海量数据的存储和分析处理对计算机硬件能力和数据分析能力都是一个极大的挑战.数据挖掘算法是针对于大批量数据处理而提出并逐步发展起来的,基于完备的数据库技术,可以在云计算算法、矩阵压缩算法和并行关联算法的基础上,进行算法集成,能进一步提高数据挖掘的速度、精度和时效性,在实际海量数据的处理过程中有较好的适应性,为海量数据处理提供了新的技术分析方法. With the rapid development of information technologies, information multiplies exponentially. The storage and analysis of mass data poses a great challenge for the hardware of computers and data analysis abilities. Data mining, which is based on database technique, develops from processing mass data and is used for algorithm integration on the basis of cloud computing, matrix-compression algorithm and parallel association. It helps improve the speed, accuracy and timeliness of data mining and is highly adaptable in processing mass data. Therefore, it provides a new way to process mass data.
作者 唐宝富
出处 《湖南工程学院学报(自然科学版)》 2014年第3期37-40,共4页 Journal of Hunan Institute of Engineering(Natural Science Edition)
关键词 海量数据 数据分析处理 数据挖掘算法 mass data data analysis and processing data mining algorithm
  • 相关文献

参考文献3

  • 1吴晓伟.MapReduce并行编程模式的应用与研究[D].中国科学技术大学硕士论文,2009.
  • 2张兆功,李建中,张艳秋.海量数据上挖掘关联规则的并行算法[J].哈尔滨工业大学学报,2004,36(5):561-565. 被引量:5
  • 3朱晓峰.面向海量数据的快速挖掘算法研究[M].南京邮电大学,2012(5).

二级参考文献17

  • 1MANNILA H,TOIVONEN H, INKERI A Verkamo.Efficient algorithms for discovering association rules,Knowledge Discovery in Databases [ A ]. The 1994AAAI Workshop ( KDD' 94 ) [ C ]. Seattle: AAAI Press, 1994. 181 - 192.
  • 2BAYARDO R J. Efficiently mining long patterns from databases[ A]. Proceedings of ACM SIGMOD International Conference on Management of Data (SIGMOD'98) [ C]. Seattle:ACM Press, 1998. 85 -93.
  • 3BAYARDO R J, AGRAWAL R, GUNOPULOS D.Constraint-based rule mining on large, dense data sets[A]. Proceedings of 1999 International Conference on Data Engineering ( ICDE' 99) [ C ]. Sydney: IEEE Computer Society Press, 1999. 188 - 197.
  • 4HAN J, PEI J, YIN Y. Mining frequent patterns without candidate generation [ A ]. Proceedings of ACM SIGMOD International Conference on Management of Data ( SIGMOD' 2000 ) [ C ], San Diego:ACM Press, 2000. 1 -12.
  • 5AGRAWAL R,SHAFER J C. Parallel mining of association rules [ J ]. IEEE Transactions on Knowledge and Data Engineering, 1996,8 (6): 962 - 969.
  • 6HAN E H,KARYPIS G,KUMAR V. Scalable parallel data mining for association rules[ A]. Proceedings of ACM SIGMOD International Conference on Management of Data (SIGMOD' 97) [ C ]. Tucson: ACM Press, 1997. 277-288.
  • 7AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large database[ A]. Proceedings of ACM SIGMOD International Conference on Management of Data ( SIGMOD' 93 )[C]. Washington D C: ACM Press, 1993. 207 -216.
  • 8AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules [ A ]. Proceedings of 20th International Conference Very Large Data Bases[ C]. Santiago de Chile: Morgan Kaufmann, 1994. 487 - 499.
  • 9PARK J S, CHEN M S, YU P S. An efficient hashbased algorithm for mining association rules[ A]. Proceedings of ACM SIGMOD International Conference on Management of Data ( SIGMOD' 95 ) [ C ]. San Jose:ACM Press, 1995. 175 - 186.
  • 10BRIN S,MOTWANI R,DLLMAN J D, et al. Dynameic itemset counting and implication rules for market basket data[ A]. Proceedings of ACM SIGMOD International Conference on Management of Data (SIGMOD' 97) [ C ]. Tucson, Arizona: ACM Press, 1997.255 - 264.

共引文献4

同被引文献4

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部