期刊文献+

基于K均值聚类算法的宫颈癌细胞分割方法 被引量:2

Segmentation for Cervical Cancer Cells Based on K-Means Clustering Algorithm
下载PDF
导出
摘要 目的探究一种对宫颈癌细胞显微图像进行彩色分割的方法,辅助临床诊断。方法采用彩色聚类分割方法,并结合K-means聚类算法实现细胞图像的有效分割。结果实现了宫颈癌细胞图像的有效分割,色彩信息得到最大保留。结论该实验结果有利于辅助专家进行宫颈癌病理诊断,并为后期研究宫颈癌细胞特征识别奠定基础。 Objective To explore an effective segmentation algorithm method for microscopic image of cervical cancer cell, to assist clinical diagnosis. Methods Effectively segmentation for cell image was obtained by color clustering algorithm, combining improve, d K-means clustering algorithm. Results Cervical cancer cell image was segmented effectively, and kept the color information as much as possible. Conclusions The result is helpful for pathological diagnosis and characteristics identification for later research on cervical cancer ceils.
出处 《临床医学工程》 2014年第9期1089-1090,共2页 Clinical Medicine & Engineering
关键词 宫颈癌细胞 K—means聚类 彩色图像分割 Cervical cancer cells K-means clustering Color image segmentation
  • 相关文献

参考文献8

二级参考文献37

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 2刘健庄,谢维信.高效的彩色图像塔形模糊聚类分割方法[J].西安电子科技大学学报,1993,20(1):40-46. 被引量:5
  • 3刘重庆,程华.分割彩色图像的一种有效聚类方法[J].模式识别与人工智能,1995,8(A01):133-138. 被引量:7
  • 4谷保平,许孝元,郭红艳.基于粒子群优化的k均值算法在网络入侵检测中的应用[J].计算机应用,2007,27(6):1368-1370. 被引量:24
  • 5杨育彬 杨献春 等.基于BP神经网络的肺癌早期细胞诊断系统[J].南京大学学报(自然科学),计算机专辑,2000,36:95-102.
  • 6Ruberto C D,Dempster A,Khan S,et al.Analysis of infected blood cell images using morphological operators[J].Image and Vision Computing,2002,20:133-146.
  • 7Fan Jian-ping,Yau D K Y.Automatic image segmentation by integrating color-edge extraction and seeded region growing[J].IEEE Trans on Image Processing, 2001,10(10) : 1454-1466.
  • 8Moghaddamzadeh A,Bourbakis N.A fuzzy region growing approach for segmentation of color images[J].Pattem Recognition, 1997,30 (6):867-881.
  • 9Garbay C.Image structure representation and processing:A discussion of some segmentation methods in cytology[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 1986,8(2):140-146.
  • 10Vapnik V.The nature of statistical learning theory[M].[S.1.]:Springer Verlag, 1995.

共引文献465

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部