期刊文献+

非线性切换系统的振荡行为及其Lyapunov指数计算 被引量:2

Oscillated behavior and Lyapunov exponent calculation of nonlinear switching system
下载PDF
导出
摘要 讨论了2组不同系数下的Chen系统经过周期切换生成的一类三维非线性切换系统的动力学行为及其演化过程.由平衡点的局部分岔行为分析,得到子系统不同分岔,如Fold分岔、Hopf分岔的临界条件和相关稳态解.两子系统的不同稳态解之间,如焦点与焦点、焦点与极限环之间,通过周期切换,呈现出丰富的振荡行为.随系统参数变化,切换系统会出现非光滑分岔,导致诸如混沌等复杂的非线性现象.利用Poincaré映射分析方法,计算了周期切换系统的Lyapunov指数.通过与相应的分岔图比对,验证了算法的有效性.以Lyapunov指数为判据,可以有效揭示此类混杂系统由倍周期分岔通向混沌的道路. The complicated behaviors of the model in 3D nonlinear switching system were investigated in details.Based on the local analysis,the critical conditions of Fold bifurcation and Hopf bifurcation were derived to explore the bifurcations of compound systems with different stable solutions of focus or stable cycle in the two subsystems.With the change of parameters,different types of non-smooth bifurcations occurred in the switching system to result in chaotic oscillations.By Poincaré mapping,the Lyapunov exponent of the switching system was calculated.Compared with bifurcation diagram,the effectiveness of the algorithm was verified.The results show that with Lyapunov index as criterion,the route to chaos via period-doubling bifurcations in such compound system is revealed explicitly.
出处 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第5期611-615,共5页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(21276115 11202085)
关键词 CHEN系统 周期切换 POINCARE映射 LYAPUNOV指数 混沌 Chen system periodic switching Poincaré mapping Lyapunov exponent chaos
  • 相关文献

参考文献9

  • 1Bao W, Li B, Chang J T, et al. Switching control of thrust regulation and inlet buzz protection for ducted rocket [ J]. Acta Astronautica, 2010, 67:764 - 773.
  • 2吴天一,张正娣,毕勤胜.切换电路系统的振荡行为及其非光滑分岔机理[J].物理学报,2012,61(7):30-37. 被引量:5
  • 3Zhang C, Yu Y, Han X J, et al. Dynamical behaviors of a system with switches between the Rossler oscillator and Chua's circuits[J]. Chin Phys B,2012,21 (10): 100501 - 100508.
  • 4Xie G M, Wang L. Periodical stabilization of switched linear systems [ J ]. Journal of Computational and Ap- plied Mathematics, 2004, 181 ( 1 ) :176 - 187.
  • 5蔡国梁,姚琴,姜胜芹.时滞细胞神经网络全局同步的滑模控制方法[J].江苏大学学报(自然科学版),2014,35(3):366-372. 被引量:1
  • 6Cheng D, Guo L, Lin Y, et al. Stabilization of switched linear systems [ J ]. IEEE Transactions on Automatic Control,2005, 50 (5) : 661 - 666.
  • 7Liu X G, Martin R R, Wu M, et al. Global exponential stability of bidirectional associative memory neural net- works with time delays [ J ]. IEEE Transactions on Neu- ral Networks, 2008, 19 ( 3 ) :397 - 407.
  • 8Chen G R, Ueta T. Yet another chaotic attractor [ J ]. Int J of Bifurcation and Chaos, 1999, 9:1465 - 1466.
  • 9Leine R I. Bifurcations of equilibria in non-smooth con- tinuous systems [ J]. Physica D : Nonlinear Phenomena, 2006,223( 1 ) : 121 - 137.

二级参考文献12

  • 1Chua Leon O, Yang Lin. Cellular neural networks theory [J]. IEEE Transactions on Circuits and System 1988, 35(10) :1257 - 1272.
  • 2Cai Guoliang, Shao Haijian. Synchronization-based ap- proach for parameters identification in delayed chaotic network [J]. Chinese Physics B, 2010,19(6), doi: 10.1088/1674 - 1056/19/6/060507.
  • 3Yang Yongqing, Cao Jinde. Exponential synchronization of the complex dynamical networks with a coupling delay and impulsive effects [J]. Nonlinear Anal, Real World Appl, 2010, 11(3) : 1650 -1659.
  • 4Cai Guoliang, Yao Qin, Shao Haijian. Global synchro- nization of weighted cellular neural networks with time- varying coupling delays [ J ]. Communications in Nonli- near Science and Numerical Simulation, 2012, 17 ( 10 ) : 3843 - 3847.
  • 5Cai Guoliang, Shao Haijian, Yao Qin. A linear matrix inequality approach to global synchronization of multidelay Hopfield neural networks with parameter perturba- tions [ J ]. Chinese Journal of Physics, 2012, 50 ( 1 ) : 50 - 63.
  • 6Huang He, Feng Gang. Synchronization of nonidentical chaotic neural networks with time delays [ J ]. Neural Networks, 2009, 22 (7) : 869 - 874.
  • 7Shao Haijian, Cai Guoliang, Wang Haoxiang. An linear matrix inequality approach to global synchronisation of non-parameters perturbations of multi-delay Hopfield neural network [ J ]. Chinese Physics B, 2010, 19 (11) : 110512.
  • 8Gan Qintao, Xu Rui, Kang Xibing. Synchronization of chaotic neural networks with mixed time delays [ J ]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16 (2): 966-974.
  • 9Cai Guoliang, Yao Qin, Fan Xinghua, et al. Adaptive projective synchronization in an array of asymmetric neu- ral networks [J]. Journal of Computers, 2012, 7(8): 2024 - 2030.
  • 10陈章耀,张晓芳,毕勤胜.广义Chua电路簇发现象及其分岔机理[J].物理学报,2010,59(4):2326-2333. 被引量:14

共引文献4

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部