期刊文献+

基于MST的基因数据社团挖掘算法 被引量:2

Detecting communities of gene expression data based on MST
下载PDF
导出
摘要 使用机器学习方法来分析生物信息学中一些复杂的基因表达数据是目前重要的研究领域之一。使用社团挖掘的方法对基因表达数据进行分类,社团内由类似的基因数据组成,研究和分析每个社团的结构和功能以及社团之间的关系,这对深刻认识诸多生物过程的本质有重要意义。将最小生成树的概念引入生物信息学中基因表达数据的社团挖掘分析中,设计了最小生成树来表示基因表达数据和基于此的社团挖掘算法,针对该算法提出一些目标函数,来判别基因表达数据社团挖掘算法的性能。最后,通过实验验证了该算法对于一些目标函数能够产生最优的社团划分,并且社团挖掘算法的性能良好。 With the development of the bioinformatics, how to analyzes complex genomics data using machine learning approach has become an important research field. Gene expression data are classified by community mining method, and the community is made up of the similar genetic data. It is very important significance for understanding the essence of biological processes that the structure and function of community and the relationship between the communities are researched. Minimum spanning tree is used in community detection gene expression data of molecular biology. Using minimum spanning tree to represent the gene expression data and detecting community method are designed. The performance of detecting community method is evaluated for some rule function. According to the results of the experiments, it is proved that optimum community can be obtained and the performance of the algorithm is good.
作者 刘飞
出处 《电子设计工程》 2014年第17期50-52,55,共4页 Electronic Design Engineering
基金 宝鸡市科技计划项目(2013R5-5)
关键词 生物信息学 社团挖掘 基因表达数据 最小生成树 bioinformatics community detection gene expression data minimum spanning tree
  • 相关文献

参考文献9

  • 1Eric S lander. Array of hope [J]. Nature Genetics, 1999(21 ): 3-4.
  • 2Girvan M,Newman M E J. Community structure in social and biological networks [J]. Proceedings of the National Academy of Sciences, 2002,99 (12) : 7821-7826.
  • 3王艳,李应兴,靳二辉.复杂网络健壮社团挖掘算法[J].计算机工程与应用,2012,48(31):36-39. 被引量:3
  • 4Brandes U, Delling D, Gaerfler M, et al. On modularity clustering [J]. Knowledge and Data Engineering, IEEE Transactions on, 2008, 20(2): 172-188.
  • 5Eisen M B, Spellman P T, Brown P O, et al. Cluster analysis and display of genome-wide expression patterns [J]. Proceedings of the National Academy of Sciences, 1998, 95 (25): 14863-14868.
  • 6Ben-Dor A,Shamir R,Yakhini Z.Clustering gene expression pattems:ournal of computational biology,1999,: 281-297.
  • 7Frank Dehne, JohnIacono, Jorg-Rudiger Sack. Algorithms and Data Structures [M]. Springer-Verlag Berlin and Heidelberg GmbH & Co. K, Edition.2011.
  • 8Ramonell K M,Zhang B,Ewing R M,et al.Microarray analysis of chitin elicitation in Arabidopsis thaliana [J].Molecular Plant Pathology,2002, 3(5): 301-311.
  • 9Sherlock G. Analysis of large-scale gene expression data[J]. Current Opinion in Immunology, 2000, 12(2): 201-205.

二级参考文献8

  • 1Girvan M, Newmann M E J.Community structure in social and biological networks[J].Proc Natl Acad Sci, 2002,99( 12 ) : 7821-7826.
  • 2Brandes U, Delling D, Gaertler M, et al.On modularity clustering[J].IEEE Trans Knowl Data Eng, 2008, 20. 172-188.
  • 3Pothen A, Simon H, Liou K P.Partitioning sparse matri- ces with eigenvector of graphs[J].SIAM Jounal on Matrix Analysis and Applications, 1990, 11 (2) :430-452.
  • 4Kemighan B W, Lin S.An efficient heuristic procedure for portioning graphs[J].Bell System Technical Jounal, 1970,49:291-307.
  • 5Kaner B, Levina E,Newman M E J.Robustness of community structure in networks[J].Physical Review E, 2008,77(44): 1-9.
  • 6Draper D.Localized partial evaluation of Bayesian belief networks[D].Seattle: University of Washington, 1995.
  • 7Zachary W W.An information flow model for conflict and fission in small groups[J].Anthropol Res, 1977, 33: 452-473.
  • 8Chen Suhuan.Matrix perurbation theory in structural dynamic design[M].Beijing:Science Press,2007.

共引文献2

同被引文献17

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部