期刊文献+

Bifurcation analysis of fan casing under rotating air flow excitation 被引量:2

Bifurcation analysis of fan casing under rotating air flow excitation
下载PDF
导出
摘要 A fan casing model of cantilever circular thin shell is constructed based on the geometric characteristics of the thin-walled structure of aero-engine fan casing. According to Donnelly's shell theory and Hamilton's principle, the dynamic equations axe established. The dynamic behaviors are investigated by a multiple-scale method. The effects of casing geometric parameters and motion parameters on the natural frequency of the system are studied. The transition sets and bifurcation diagrams of the system are obtained through a singularity analysis of the bifurcation equation, showing that various modes of the system such as the bifurcation and hysteresis will appear in different parameter regions. In accordance with the multiple relationship of the fan speed and stator vibration frequency, the fan speed interval with the casing vibration sudden jump is calculated. The dynamic reasons of casing cracks are investigated. The possibility of casing cracking hysteresis interval is analyzed. The results show that cracking is more likely to appear in the hysteresis interval. The research of this paper provides a theoretical basis for fan casing design and system parameter optimization. A fan casing model of cantilever circular thin shell is constructed based on the geometric characteristics of the thin-walled structure of aero-engine fan casing. According to Donnelly's shell theory and Hamilton's principle, the dynamic equations axe established. The dynamic behaviors are investigated by a multiple-scale method. The effects of casing geometric parameters and motion parameters on the natural frequency of the system are studied. The transition sets and bifurcation diagrams of the system are obtained through a singularity analysis of the bifurcation equation, showing that various modes of the system such as the bifurcation and hysteresis will appear in different parameter regions. In accordance with the multiple relationship of the fan speed and stator vibration frequency, the fan speed interval with the casing vibration sudden jump is calculated. The dynamic reasons of casing cracks are investigated. The possibility of casing cracking hysteresis interval is analyzed. The results show that cracking is more likely to appear in the hysteresis interval. The research of this paper provides a theoretical basis for fan casing design and system parameter optimization.
机构地区 School of Astronautics
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第9期1099-1114,共16页 应用数学和力学(英文版)
基金 supported by the National Natural Science Foundation of China(No.10632040)
关键词 fan casing circular thin shell Hamiltonian principle singularity analysis crack fan casing, circular thin shell, Hamiltonian principle, singularity analysis,crack
  • 相关文献

参考文献8

二级参考文献37

共引文献47

同被引文献34

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部