期刊文献+

约束函数估值策略辅助的微粒群算法 被引量:1

A Constraint Approximation Assisted PSO for Computationally Expensive Constrained Problems
下载PDF
导出
摘要 针对约束函数计算费时的优化问题,提出了一种基于分类器的预测微粒群算法。通过构造一个分类器对种群个体进行约束条件满足与否的估计判断,从而减少约束函数的计算时间,缩短整个优化时间。在13个标准测试函数上的测试结果表明,本文提出的方法可以大大减少约束函数的实际计算次数。 A classifier-based particle swarm optimization is proposed for computationally expensive constrained problems in this paper.A classifier can be constructed in order to judge whether the individual is satisfied with the constraints or not,which will help reduce the computation time of constrained function,and decrease the total optimization time.The experimental results on the 13 standard test functions show that the proposed method can greatly decrease the number of calculation for constraint functions.
出处 《太原科技大学学报》 2014年第4期246-252,共7页 Journal of Taiyuan University of Science and Technology
关键词 约束优化问题 微粒群算法 支持向量机 constrained optimization problem particle swarm algorithm classifierg
  • 相关文献

参考文献1

二级参考文献9

  • 1赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 2Kennedy J, Eberhart R C. Particle swarm optimization [A]. Proceedings of the IEEE International Conference on Neural Networks [C]. Piscataway, NJ, USA: IEEE, 1995. 1942 - 1948.
  • 3Shi Y, Eberhart R C. Empirical study of particle swarm optimization [ A ]. Proceedings of the 1999 Congress on Evolutionary Computation [ C]. Piscataway, NJ, USA: IEEE, 1999. 1945 - 1950.
  • 4Ratnaweera A, Halgamuge S K, Watson H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (3) : 240 - 255.
  • 5Fan H Y. A modification to particle swarm optimization algorithm [J]. Engineering Computations, 2002, 19(7 -8) : 970-989.
  • 6van den Bergh F, Engelbrecht A P. A cooperative approach to particle swarm optimization [ J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (3) : 225 - 239.
  • 7Kennedy J, Mendes R. Neighborhood topologies in fully-informed and best-of-neighborhood particle swarms [ A ]. Proceedings of the 2003 IEEE International Workshop on Soft Computing in Industrial Applications [C]. Piscataway, NJ, USA': IEEE, 2003. 45 - 50.
  • 8El-Gallad A, El-Hawary M, Sallam A, et al. Enhancing the particle swarm optimizer via proper parameters selection [ A ]. Proceedings of the 2002 IEEE Canadian Conference on Electrical & Computer Engineering [ C ]. Piscataway, NJ, USA: IEEE,2002. 792 - 797.
  • 9Shi Y, Eberhart R C. Parameter Selection in Particle Swarm Optimization [ R ]. Indianapolis, Indiana, USA : Indiana University- Purdue University at Indianapolis, 1998.

共引文献11

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部