期刊文献+

AC和NS等离子体激励对细长前体分离涡流场的控制 被引量:5

Flow Control over a Slender Forebody Using AC and NS-DBD Plasma Actuators
下载PDF
导出
摘要 为了在更高的风速下实现圆锥前体分离涡的控制,了解AC-DBD和NS-DBD激励器的激励特性,应用交流(AC)放电和纳秒脉冲(NS)放电等离子体激励对20°顶角的圆锥-圆柱组合体圆锥段前体非对称流场进行主动流动控制实验。实验在低速开口风洞中进行,迎角45°,风速5~22m/s,流动控制方式为等离子激励器关闭、左舷或右舷等离子体激励器开启三种模式。结果表明:风速5m/s时,通过AC-DBD的左、右舷激励可控制圆锥前体的非对称流场实现镜像对称,NS-DBD则无明显作用效果;随着风速的提高,AC-DBD对非对称载荷的控制作用逐渐减小,与此同时NS-DBD的控制作用逐渐增加;风速22m/s时,NS-DBD可实现圆锥前体非对称流场的镜像对称控制,而AC-DBD则无明显作用效果;相对于AC-DBD等离子体激励,NS-DBD对于更高速度下的分离涡流场控制是有效的。 In order to control the vortex flow over conical forebody under higher wind ,and to understand the characteristic of the AC-DBD and NS-DBD ,alternative current(AC) and nanosecond pulse(NS) plasma dielec-tric barrier discharge(DBD) is applied to the active control of the asymmetrical vortices over the cone of the cone-cylinder .The experiment is performed in a low speed wind tunnel .The angle of attack is 45° and the wind speed ranges from 5 m/s to 22 m/s .Flow control modes of the actuator are plasma off ,port on and starboard on .The result shows that the asymmetrical field can be mirror symmetry control by port on and starboard on of AC-DBD at 5 m/s ,but the NS-DBD is not effective .As the wind speed increased ,the function of the AC-DBD on asymmetric vortices is gradually disappears ,meanwhile the function of NS-DBD is increasing .When the wind speed reaches 22 m/s ,NS-DBD can get the asymmetrical field mirror symmetry ,but the AC-DBD is not effective .This implies that the NS-DBD is more effective to control the separated vortices field at the higher w ind speed relative to the AC-DBD .
出处 《航空工程进展》 2014年第3期358-363,共6页 Advances in Aeronautical Science and Engineering
基金 国家自然科学基金(11172243 51107101) 西北工业大学基础研究基金(JC201218) 西北工业大学翱翔之星计划
关键词 等离子体控制 细长前体 纳秒脉冲激励器 交流高压激励器 大迎角 主动流动控制 plasma control slender forebody NS-DBD plasma actuator AC-DBD plasma actuator high angle of attack active flow control
  • 相关文献

参考文献16

  • 1Ericsson L E. Sources of high alpha vortex asymmetry at zero sideslip[J].Journal of Aircraft,1992,(06):1086-1090.
  • 2Lowson M,Ponton A J C. Symmetry breaking in vortex flows on conical bodies[J].AIAA Journal,1992,(06):1576-1583.
  • 3Hanff E,Lee R,Kind R J. Investigations on a dynamic forebody flow control system[A].1999.1-9.
  • 4顾蕴松,明晓.大迎角细长体侧向力的比例控制[J].航空学报,2006,27(5):746-750. 被引量:17
  • 5Liu F,Luo S J,Gao C. Flow control over a conical forebody using duty-cycled plasma actuators[J].AIAA Journal,2008,(11):2969-2973.
  • 6孟宣市,郭志鑫,罗时钧,刘锋.细长圆锥前体非对称涡流场的等离子体控制[J].航空学报,2010,31(3):500-505. 被引量:17
  • 7Meng X S,Wang J L,Cai J S. Optimal DBD duty cy-cle for conical forebody side-force proportional control.AIAA-2013-347[R].2013.
  • 8Reece R J,Xin Dai. Optimization of the aerodynamic plas-ma actuator as an electrohydrodynamic(EHD)electrical de-vice.AIAA-2006-1203[R].2006.
  • 9Roupassov D V,Nikipelov A A,Nudnova M M. Flow separation control by plasma actuator with nano-sec-ond pulsed periodic discharge[J].AIAA Journal,2009,(01):168-185.
  • 10李应红,吴云,梁华,宋慧敏,贾敏.提高抑制流动分离能力的等离子体冲击流动控制原理[J].科学通报,2010,55(31):3060-3068. 被引量:65

二级参考文献46

共引文献132

同被引文献97

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部