期刊文献+

信息流的网络化C^4ISR系统结构关键节点挖掘方法 被引量:11

Mining Method of Key Nodes in C^4ISR Network System Structure Based on Information Flow
下载PDF
导出
摘要 为了增强网络化C4ISR系统结构的抗毁性,如何准确挖掘系统结构关键节点至关重要。针对这一问题,首先阐述了几种基于介数的复杂网络关键节点挖掘方法,随后提出基于信息流介数的挖掘方法。该方法结合网络化C4ISR系统自身特征,建立能够表征情报获取单元(O)、情报处理单元(P)、决策控制单元(D)和响应执行单元(O)以及单元间关系(R)的OPDAR模型,在此模型上定义情报、协同和指控3种信息流,并依据3种信息流及其权重计算节点介数。最后,以区域联合防空系统结构为例,分别利用此方法和最短路径介数方法挖掘潜在的关键节点,并经分析得出:前种方法能更好地适应使命任执行阶段的变化,揭示关键节点动态转移的现象,有效支撑网络化C4ISR系统抗毁性设计。 In order to enhance the survivability of networked C4ISR systems structure,it is essential how accurately excavate key nodes of system. To solve this problem,this paper firstly describes several methods of excavating key nodes of complex networks based on Betweenness,then proposed the method of excavating key nodes based on information flow Betweenness. The method combines features of the network C4ISR system and establishes the OPDAR model characterizing the information of acquisition unit(O),information processing unit(P),making the control unit(D)and the response execution unit(O)and the relationship(R),and defines three kinds of information flows such as intelligence,collaboration and allegations based on this model,and compute node betweenness based on three kinds of information flows and their weight. Finally,in case of joint regional air defense system. This paper uses this method and the shortest path betweenness excavate the potential key nodes,and obtains the result which the former method is better able to adapt to changes of the stage in mission task,revealed the dynamic transfer phenomena of key nodes,and effectively support survivability design of networked C4ISR system.
出处 《火力与指挥控制》 CSCD 北大核心 2014年第8期61-64,69,共5页 Fire Control & Command Control
基金 总装预研基金资助项目(513060204 51306010201)
关键词 信息流 网络化C4ISR系统 系统结构 关键节点 information flow networked C4ISR systems system structure key nodes
  • 相关文献

参考文献6

二级参考文献49

  • 1Scot J. Social Network Analysis: A Handbook[M]. 2nd ed. Sage Publications, 1991.
  • 2Stolfo S J, Hershkoip S, WANG K, et al. Behavior Profiling of Email [C]//Proc of the 1st NSF/NIJ Syrup on Intelli gence, Security Informatics,2003.
  • 3Newman M E J. The Structure of Scientific Collaboration Networks[C]//Proc of the National Academy of Sciences of the United States of America, 2001,98(2): 404-409.
  • 4Ishida K. Extracting Latent Weblog Communities: A Parti tioning Algorithm for Bipartite Graphs[C]//Proc of the 2nd Annual Workshop on the Weblogging Ecosystem, 2005.
  • 5I.erman K, Jones L. Social Browsing on Flickr[C]//Proc of the Int' Conf on Weblogs and Social. Media, 2006.
  • 6Lerman K. Social Networks and Sccial Information Filtering on Digg[C]//Proc of the Int'l Conf on Weblogs and Social Media, 2006.
  • 7Milgram S. The Small World Problem[J]. Psychology Tody, 1967,2:60-67.
  • 8Contributors W. Six Degrees of Kevin Bacon.[EB/OL], [2006-01-15]. http://en. wikipedia. org/w/index. php? lille =Six_Degrees_of_Kevin_ Bacon &oldid= 48040027.
  • 9Watts D J, Strogalz S H. Collective Dynamics of ‘Small World' Networks[J]. Nature, 1998,393 : 140-442.
  • 10Barabdsi A-L, Albert R. Emergence of Scaling in Random Networks [J]. Science, 1999,286 : 509-512.

共引文献43

同被引文献123

引证文献11

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部