期刊文献+

水催化2个酯分子相互转化反应的理论研究 被引量:4

Theoretical Studies on Water Catalysis of Two Esters Interconversion Reaction
下载PDF
导出
摘要 从印楝植物内生真菌Phomopsis sp.培养液中分离得到的4-acetoxymultiplolide(1)和1-acetoxymultiplolide(2)在室温及水存在下能够相互转化.提出二者相互转化最可能的4个途径(机理A^D).在B3LYP/6-311+G(d,p)水平进行气相条件的优化,结果表明,无水催化的机理A中TS1和TS2的活化能均显著大于120 kJ/mol,2个分子水催化的机理D中TS1和TS2的活化能则显著降低.计算结果显示水的溶剂化效应能进一步降低机理D中TS1和TS2的活化能.在MP2/6-311++G(2d,2p)//B3LYP/6-311+G(d,p)水平计算了单点能,得到在水相时机理D中TS1和TS2的活化能分别为106.24和107.37 kJ/mol.因此,机理D是化合物1和2在室温下及水存在时相互转化最可能的途径,该途径是一种特殊的水催化分子内酯的醇解反应,也是一种经典的亲核加成反应,通过一种新的叔醇中间体实现. Compounds 1 and 2 could interconverse to each other at room temperature when water was encoun-tered. Four possible interconversion mechanisms, A, B, C and D, were put up. At B3LYP/6-311+G(d,p) level in gas phase, the optimized activation energies of TS1 and TS2 in mechanism A were all distinctively more than 120 kJ/mol. But as for mechanism D, the optimized activation energies of TS1 and TS2 were dra-matically decreased. Further results showed that the solvation effects of water also reduced the activation ener-gy. Meanwhile, the single point energy were calculated at MP2/6-311++G(2d,2p)//B3LYP/6-311+G(d,p) level. Finally the activation energies of TS1 and TS2 in mechanism D were 106. 24 and 107. 37 kJ/mol, re-spectively. Therefore, mechanism D was the most possible pathway for the interconversion between compounds 1 and 2 at room temperature. This preferred mechanism pathway was a special water-catalyzed intramolecular oxoester alcoholysis, which also was a conventional nucleophilic addition, producing a novel tetrahedral alco-holic intermediate.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2014年第9期1919-1925,共7页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:21062027) 云南中烟基金(批准号:2011JC08) 国家烟草专卖局基金(批准号:110201201009 BR-03)资助~~
关键词 分子内酯交换反应 水催化 活化能 密度泛函理论计算 二级微扰理论计算 Intramolecular ester exchange reaction Water catalysis Activation energy Density functionaltheory calculation Second-order M^bller-Plesset perturbation theory calculation
  • 相关文献

参考文献21

  • 1WuS. H., ChenY. W., ShaoS. C.,WangL. D., LiZ. Y.,YangL. Y.,LiS. L., HuangR., J. Nat. Prod.,2008,71,731- 734.
  • 2Umehara M. , Takada Y. , Nakao Y. , Kimura J. , Tetrahedron Lett. , 2009, 50, 840-843.
  • 3Frisch M. J. , Trucks G. W. , Schlegel H. B. , Scuseria G. E. , Robb M. A. , Cheeseman J. R. , Scalmani G. , Barone V. , Mennucci B. , Petersson G. A. , Nakatsuji H. , Caricato M. , Li X. , Hratchian H. P. , Izmaylov A. F. , Bloino J. , Zheng G. , Sonnenberg J. L. , Hada M. , Ehara M. , Toyota K. , Fukuda R. , Hasegawa J. , [shida M. , Nakajima T. , Honda Y. , Kitao O. , Nakai H. , Vreven T. , Montgomery J. A. Jr. , Peraha J. E. , Ogliaro F. , Bearpark M. , Heyd J. J. , Brothers E. , Kudin K. N. , Staroverov V. N. , Kobayashi R. , Normand J. , Raghavachal"i K. , Rendell A. , Burant J. C. , Iyengar S. S. , Tomasi J. , Cossi M. , Rega N. , Millam J. M. , Klene M. , Knox J. E. , Cross J. B. , Bakken V. , Adamo C. , Jaramillo J. , Gomperts R. , Stratmann R. E. , Yazyev O. , Austin A. J. , Cam- mi R. , Pomelli C. , Ochterski J. W. , Martin R. L. , Morokuma K. , Zakrzewski V. G. , Voth G. A. , Salvador P. , Dannenberg J. J. , Dapprich S. , Daniels A. D. , Farkas 0. , Foresman J. B. , Ortiz J. V. , Cioslowski J. , Fox D. J. , Gaussian 09, Revision A. 02, Gaussi- an Inc. , Wallingford CT, 2009.
  • 4Siddiqui I. N. , Zahoor A. , Hussain H. , Ahmed I. , Ahmad V. U. , Padula D. , Draeger S. , Schulz B. , Meier K. , Steinert M. , J. Nat. Prod. , 2011, 74, 365-373.
  • 5Andres G. O. , Pierini A. B. , de Rossi R. H. , J. Org. Chem. , 2006, 71 , 7650-7656.
  • 6Yang Y. , J. Physical Chem. A, 2012, 116, 10150-10159.
  • 7倪哲明,施炜,夏明玉,薛继龙.Au(111)面上噻吩加氢脱硫反应机理的理论研究[J].高等学校化学学报,2013,34(10):2353-2362. 被引量:12
  • 8Chen J. , Wang M. , Chem. Res. Chirrese Universities, 2013, 29(3), 584-588.
  • 9金兴辉,胡炳成,贾欢庆,刘祖亮,吕春绪.1,2,3-三氨基胍二硝基胍盐的合成与量子化学研究[J].高等学校化学学报,2013,34(12):2821-2826. 被引量:4
  • 10Ramirez, A. , Mudryk B. , Rossano L. , Tummala S. , J. Org. Chem. , 2012, 77, 775-779.

二级参考文献60

共引文献20

同被引文献28

  • 1杨晓亮,王明安,梁晓梅,王小芳,尤田耙,王道全.α-羰基环十二酮的酮-烯醇互变异构中的构象效应[J].有机化学,2005,25(10):1279-1282. 被引量:4
  • 2卢斌斌,谢剑平,刘惠民.卷烟烟气pH与烟气总粒相物中游离烟碱的关系[J].中国烟草学报,2005,11(6):7-16. 被引量:32
  • 3简辉,杨学良,王保兴,王玉.复烤温度对烟叶化学成分及感官质量的影响[J].烟草科技,2006,39(12):12-15. 被引量:47
  • 4Graton J, Berthelot M, Gal J-F, et al. Site of protonation of nicotine and nornicotine in the gas phase: pyridine or pyrrolidine nitrogen?[J]. J Am Chem Soc, 2002, 124(35):10552-10562.
  • 5Berthelot M, Decouzon M, Gal JF, et al. Gas-phase basicity and site of protonation of polyfunctional molecules of biological interest: FT-ICR experiments and AM1 calculations on nicotines, nicotinic acid derivatives, and related compounds[J]. J Org Chem, 1991, 56(14):4490-4494.
  • 6Elmore D E, Dougherty D A. A computational study of nicotine conformations in the gas phase and in water[J]. J Org Chem, 2000, 65(3):742-747.
  • 7Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision A.02, Gaussian Inc., Wallingford CT, 2009.
  • 8Jiang Juxing, Li Liangchun, Wang Mingfeng, et al. Theoretical explanation of the peak splitting of tobacco-specific N-nitrosamines in HPLC [J]. Bull Korean Chem Soc, 2012, 33(5):1722 - 1728.
  • 9Kone M, Illien B, Laurence C, et al. Continuum solvation model could explain why aqueous phase protonation of nicotine and nornicotine occurs on the pyrrolidine nitrogen [J]. Int J Emerg Technol Adv Eng, 2013, 3(5):15-23.
  • 10Barlow R B, Hamilton J T. Effects of pH the activity of nicotine and nicotine monomethiodide on the rat diaphragm preparation [J]. Br J Pharmacol Chemother, 1962, 18(3):543-549.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部