摘要
We present large scale observations of C^18O (1-0) towards four massive star forming regions: MON R2, S156, DR17/L906 and M17/M18. The transitions of H2CO (110-111), C^18O (1-0) and the 6cm continuum are compared in these four regions. Our analysis of the observations and the results of the Non-LTE model shows that the brightness temperature of the formaldehyde absorption line is strongest in a background continuum temperature range of about 3 - 8 K. The excitation of the H2CO absorption line is affected by strong background continuum emission. From a comparison of H2CO and C^18O maps, we found that the extent of H2CO absorption is broader than that of C^18O emission in the four regions. Except for the DR17 region, the maximum in H2CO absorption is located at the same position as the C^18O peak. A good correlation between intensities and widths of H2CO absorption and C^18O emission lines indicates that the H2CO absorption line can trace the dense, warm regions of a molecular cloud. We find that N(H2CO) is well correlated with N( C^18O) in the four regions and that the average ratio of column densities is (N(H2CO)/N(ClSO)) ~0.03.
We present large scale observations of C^18O (1-0) towards four massive star forming regions: MON R2, S156, DR17/L906 and M17/M18. The transitions of H2CO (110-111), C^18O (1-0) and the 6cm continuum are compared in these four regions. Our analysis of the observations and the results of the Non-LTE model shows that the brightness temperature of the formaldehyde absorption line is strongest in a background continuum temperature range of about 3 - 8 K. The excitation of the H2CO absorption line is affected by strong background continuum emission. From a comparison of H2CO and C^18O maps, we found that the extent of H2CO absorption is broader than that of C^18O emission in the four regions. Except for the DR17 region, the maximum in H2CO absorption is located at the same position as the C^18O peak. A good correlation between intensities and widths of H2CO absorption and C^18O emission lines indicates that the H2CO absorption line can trace the dense, warm regions of a molecular cloud. We find that N(H2CO) is well correlated with N( C^18O) in the four regions and that the average ratio of column densities is (N(H2CO)/N(ClSO)) ~0.03.
基金
funded by the National Natural Science Foundation of China (Grant Nos.10778703,11373062,11303081 and 10873025)
partly supported by the National Basic Research Program of China (973 program,2012CB821800)