期刊文献+

miRNA的异构体——isomiR 被引量:3

The Isoforms of miRNA—isomiR
下载PDF
导出
摘要 最近,深度测序技术揭示:同一个miRNA前体可能由于Drosha或Dicer的剪切位点改变,外切核酸酶介导的miRNA末端缩短,miRNA编辑或miRNA 3'末端无需模板的核苷酸添加等4种原因,而形成多种长度或序列不同的miRNAs异构体—isomiR.因为这些isomiR与已注解的miRNA可以调节同一个靶标,也可以靶向不同的靶标,所以它们不仅扩大了miRNA调节的范围,而且还有可能代表了每种miRNA基于isomiR的一种微型调节网络.研究发现,isomiR的表达具有细胞、组织、发育和疾病状况等特异性,并且很多人类疾病的致病机制也与它们有关,推测isomiR将来不仅有可能成为疾病诊断或治疗的生物学标记或靶标,而且相关的研究还对于RNA干扰技术也具有重要的指导意义.本文主要综述了isomiR的研究进展,并对isomiR应用前景做了展望. Recently, the deep sequencing revealed that the same miRNA precursor can generate multiple isoforms of miRNA, named isomiR, which vary in length and/or sequence, due to a shift of cleavage sites of Drosha and Dicer, exonuclease-mediated trimming, miRNA editing, or 3'-end nontemplated nucleotide addition. These isomiR can act coordinately to target the same genes as canonical miRNA or redirect targeting to a dramatically different gene, so they not only broaden the regulatory range of the miRNA, they may also represent a deeper miRNA regulatory network based on isomiR. It has been found that the expression of isomiR is often cell, tissue, development, disease condition-specific, and they are involved in the pathogenesis of many human diseases, such as Type 2 Diabetes and cancer. It is likely that isomiR not only will be used as a diagnostic biomarker or new therapeutic target, but also has great aplication for RNAi technology. In this review, recent achievements of isomiR will be discussed. The application perspective of isomiR will also be speculated.
出处 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2014年第8期739-745,共7页 Chinese Journal of Biochemistry and Molecular Biology
基金 国家自然科学基金项目(No.11172062)~~
关键词 miRNA异构体 剪切位点 外切核酸酶 miRNA编辑 核苷酸添加 疾病 isomiR cleavage sites exonuclease miRNA editing nontemplated nucleotide addition diseases
  • 相关文献

参考文献48

  • 1Zhang S, Zhao 17, Wei C, et al. Identification and characterization of the miRNA transcriptome of Ovis aries [ J ]. PLoS One, 2013, 8(3) :e58905.
  • 2Fukunaga R, Hart BW, Hung JH, et al. Dicer partner proteins tune the length of mature miRNAs in flies and mammals [ J ]. Cell, 2012, 151(3) :533-546.
  • 3Choudhury Y, Tay FC, Lam DH, et al. Attenuated adenosine- to-inosine editing of microRNA- 376a * promotes invasiveness of glioblastoma cells [ J]. J Clin Invest, 2012, 122 (11): 4059- 4076.
  • 4Guo L, Yang Q, Lu J, et al. A comprehensive survey of miRNA repertoire and 3' addition events in the placentas of patients with pre-eclampsia from high-throughput sequencing[ J]. PLoS One, 2011, 6(6) :e21072.
  • 5Dominissini D, Amariglio N, Reehavi G. Micro-editing mistake translates into a devastating brain tumor [ J ]. J Clin Invest, 2012, 122(11) :3842-3845.
  • 6Han J, Pedersen JS, Kwon SC, et al. Posttranseriptional crossregulation between Drosha and DGCR8[ J]. Cell, 2009,136 ( 1 ) :75-84.
  • 7Roth BM, Ishimaru D, Hennig M. The core microprocessor component DiGeorge syndrome critical region 8 (DGCR8) is a nonspeeific RNA-binding protein [ J]. J Biol Chem, 2013, 288 (37) :26785- 26799.
  • 8Auyeung VC, Ulitsky I, MeGeary SE, et al. Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing [J]. Cell, 2013, 152(4) :844-858.
  • 9Quarles KA, Sahu D, Havens MA, et al. Ensemble analysis of primary mieroRNA strueture reveals an extensive capacity to deform near the Drosha cleavage site [ J]. Biochemistry, 2013,52(5 ) :795- 807.
  • 10Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research [J]. Nat Rev Cancer, 2010, 10(6) :389-402.

同被引文献55

  • 1HEIDI L. End of cancer atlas prompts rethink [J]. Nature, 2015, 517: 128-129.
  • 2KRISTENSEN V, LINGJaeRDE O, RUSSNES H, et al. Principles and methods of integrative genomic analyses in cancer[J]. Nature Reviews Cancer, 2014, 14(5) : 299- 313.
  • 3LIN Dongdong, CAO Hongbao, CALHOUN V D, et al. Sparse models for correlative and integrative analysis of imaging and genetic data [J]. Journal of Neuroscience Methods, 2014, 237(30): 69-78.
  • 4ADAMSON P, HOUGHTON P, PERILONGO G, et al. Drug discovery in paediatric oncology: roadblocks to progress [J]. Nature Reviews Clinical Oncology, 2014, 11 (12) :732-739.
  • 5DONG Y, BATRA J, ANAND K, et al. Transforming the future of treatment for ovarian cancer [J]. Clinical & Experimental Pharmacology, 2014, 4(3) : 1000157.
  • 6HAYDEN E. Personalized cancer therapy gets closer [J]. Nature, 2009, 458(7235) : 131.
  • 7CHRIS E. Using patient data for personalized cancer treatments [J]. Communications of the ACM, 2014, 57 (4) : 13-15.
  • 8ZHANG Y, LIU Q, ZHANG M, et al. Fas signal promotes lung cancer growth by recruiting myeloid-derived suppressor cells via cancer cell-derived PGE2 [J]. The Journal of Immunology, 2009, 182(6): 3801-3808.
  • 9LI G, CI W, KARMAKAR S, et al. SPOP promotes tumorigenesis by acting as a key regulatory hub in kidney cancer[J]. Cancer Cell, 2014, 25(4): 455-468.
  • 10KE A W, SHI G M, ZHOU J ,et al. Role of overexpression of CD151 and/or c-Met in predicting prognosis of hepatocellular carcinoma[J]. Hepatology, 2009, 49 (2) : 491-503.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部