摘要
为建立一种适用于生物制药工业和基因治疗领域的基因表达调控系统,构建枯草芽胞杆菌生物素连接酶(BS-BirA)与转录激活结构域的融合蛋白,以其表达载体为调控载体;在弱化的CMV启动子上游连接BS-BirA特异的操纵子序列,获得响应载体,从而得到响应于生物素的真核基因表达调控系统BS-Biotin-On。以增强型绿色荧光蛋白(EGFP)为报告基因对该系统进行考察,结果表明,与现有的类似调控系统相比,该系统具有良好的诱导率;可通过调节培养体系中生物素的浓度,实现对目的基因表达水平快速、较高效的调节。上述结果表明,BS-Biotin-On系统可能为外源基因的调控表达提供新的选择。
To establish a gene regulation system compatible with biopharmaceutical industry and gene therapy, weconstructed a fusion protein of biotin ligase from Bacillus subtilis (BS-BirA) and the trans-activation domain, and used its expression vector as the regulatory vector. Meanwhile, BS-BirA-specific operators were ligated upstream of attenuated CMV promoter to obtain the response vector. In this way, a novel eukaryotic gene regulation system responsive to biotin was established and named BS-Biotin-On system. BS-Biotin-On system was further investigated with the enhancing green fluorescent protein (EGFP) as the reporter gene. The results showed that our system was superior to the current similar regulation system in its higher induction ratio, and that the expression of interest gene could be tuned in a rapid and efficient manner by changing the biotin concentrations in the cultures. Our results show that the established system may provide a new alternative for the exogenous gene modulation.
出处
《生物工程学报》
CAS
CSCD
北大核心
2014年第8期1256-1265,共10页
Chinese Journal of Biotechnology
基金
"重大新药创制"科技重大专项课题(No.2011ZX09401-019)
国家自然科学基金(No.81302689)资助~~