期刊文献+

黑腹果蝇CG18853基因编码蛋白的生物信息学分析 被引量:2

Bioinformatics Analysis of CG18853 Encoding Protein of Drosophila melanogaster
原文传递
导出
摘要 目的:利用生物信息学方法分析黑腹果蝇CG18853基因编码蛋白的结构和功能。方法:基于NCBI数据库中黑腹果蝇CG18853基因编码蛋白的氨基酸序列,从蛋白质的理化性质、跨膜区、信号肽、亚细胞定位、结构域、三维结构及不同物种间同源蛋白进化关系等方面进行分析。结果:果蝇CG18853蛋白的理论分子量约38.5 kDa,理论等电点为8.80。CG18853蛋白为不稳定亲水性蛋白,无跨膜区和信号肽,具有DNA光修复酶FAD结合结构域。果蝇CG18853蛋白与模板3umv.1.A有60.87%的氨基酸序列一致;CG18853蛋白与长鼻袋鼠、金鱼、拟南芥、粳稻的编码产物高度同源。结论:黑腹果蝇CG18853蛋白具有DNA光修复酶家族的典型结构,可能在细胞核中参与DNA损伤修复过程。 Objective:To analyze the structure and function of CG18853 encoding protein of Drosophila melanogaster using bioinformatics methods. Method: Based on the amino acid sequence of CG18853 encoding protein of Drosophila melanogaster from NCBI database, the bioinformatics analyses were performed, including protein physicochemical property, transmembrane region, signal peptide, subcellular lo- calization, domain, tertiary structure, the phylogenetic tree of CG18853 related proteins from different species, and so on. Result: The esti- mated theoretical molecular weight and isoelectric point of the Drosophila CG18853 protein were 38. 5 kDa and 8. 80. CG18853 protein was unstable hydrophilic protein, which contained DNA photolyase FAD -binding domain, but without transmembrane region and signal pep- tide. The amino acid sequence identity between CG18853 protein and template 3umv. 1. A was 60. 87%, CG18853 protein and its related proteins in long- nosed potoroo, goldfish, thale cress and Japanese rice showed highly homology. Conclusion: CG18853 protein contained the typical structure of DNA photolyase family and might participate in the repair of DNA damage in the nuclei of Drosophila melanogaster.
出处 《生物技术》 CAS CSCD 北大核心 2014年第4期42-46,共5页 Biotechnology
关键词 CG18853基因 新基因 嵌合基因 结构与功能 生物信息学 黑腹果蝇 CG18853 gene New genes Chimeric gene Structure and function Bioinformatics Drosophila melanogaster
  • 相关文献

参考文献19

  • 1Qi Zhou Wen Wang.On the origin and evolution of new genes——a genomic and experimental perspective[J].Journal of Genetics and Genomics,2008,35(11):639-648. 被引量:6
  • 2Zhou Q,Zhang G,Zhang Y,et al.On the origin of new genes in Dro-sophila [ J ].Genome Research,2008,18(9):1446-1455.
  • 3Reinhardt JA,Wanjiru BM,Brant AT,et al.De novo ORFs in Drosophi-la are important to organismal fitness and evolved rapidly from previously non-coding sequences [ J ].PLoS Genetics,2013,9(10):e 1003860.
  • 4Katju V,Lynch M.On the formation of novel genes by duplication in the Caenorhabditis elegans genome [J].Molecular Biology and Evolution,2006,23(5):1056-1067.
  • 5Rogers RL,Bedford T,Hartl DL Formation and longevity of chimeric and duplicate genes in Drosophila melanogaster [J].Geneties,2009,181(1):313-322.
  • 6Rogers RL,Hartl DL.Chimeric genes as a source of rapid evolution in Drosophila rtwlanogaster [ J].Molecular Biology and Evolution,2012,29(2):517-529.
  • 7Assis R,Bachtmg D.Neofunctionalization of young duplicate genes in Drosophila [ J ].Proceedings of the National Academy of Sciences of the United States of America,2013,110(43):17409-17414.
  • 8Rost B,Yachdav G,Liu J.The predict protein server [J].Nucleic Acids Research,2004,32(Web Server issue):W321-326.
  • 9Pctersen TN,Brunak S,von Heijne G,et al.SignalP 4.0:discriminating signal peptides from transmembrane regions [ J ].Nature Methods,2011,8(10):785-786.
  • 10Goldberg T,Hamp T,Rost B.LocTree2 predicts localization for all do-mains of life [J].Bioinfonnatics,2012,28(18):i458-i465.

二级参考文献80

  • 1李昕,杨爽,彭立新,陈宏,王文.新基因的起源与进化[J].科学通报,2004,49(13):1219-1225. 被引量:10
  • 2Altschmied, J., Delfgaauw, J., Wilde, B., Duschl, J., Bouneau, L., Volff, J.N., and Schartl, M. (2002). Subfunctionalization of duplicate mitf genes associated with differential degeneration of alternative exons in fish. Genetics 161: 259-267.
  • 3Arguello, J.R., Chen, Y., Yang, S., Wang, W., and Long, M. (2006). Origination of an X-linked testes chimeric gene by illegitimate recombination in Drosophila. PLoS Genet. 2: e77.
  • 4Aury, J.M., Jaillon, O., Duret, L., Noel, B., Jubin, C., Porcel, B.M., Segurens, B., Daubin, V., Anthouard, V., Aiach, N., Arnaiz, O., BUlaut, A., Beisson, J., Blanc, I., Bouhouche, K., Camara, F., Duharcourt, S., Guigo, R., Gogendeau, D., Katinka, M., Keller, A.M., Kissmehl, R., KIotz, C., Koll, F., Le Mouel, A., Lepere, G., Malinsky, S., Nowacki, M., Nowak, J.K., Platlner, H., Poulain, J.,Ruiz, F., Serrano, V., Zagulski, M., Dessen, P., Betermier, M., Weissenbach, J., Scarpelli, C., Schachter, V., Sperling, L., Meyer, E., Cohen, J., and Wincker, P. (2006). Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444: 171-178.
  • 5Bai, Y., Casola, C., Feschotte, C., and Betran, E. (2007). Comparative genomics reveals a constant rate of origination and convergent acqui- sition of functional retrogenes in Drosophila. Genome Biol. 8:R11.
  • 6Bailey, J.A., Liu, G., and Eichler, E.E. (2003). An Alu transposition model for the origin and expansion of human segmental duplications. Am. J. Hum. Genet. 73:823 834.
  • 7Begun, D.J., Lindfors, H.A., Kern, A.D., and Jones, C.D. (2007). Evidence for de novo cvolution of testis-expressed genes in the Drosophila yakuba/Drosophila erecta clade. Genetics 176:1131-1137.
  • 8Betran, E., and Long, M. (2003). Dntf-2r, a young Drosophila retroposed gene with specific male expression under positive Darwinian selection. Genetics 164:977-988.
  • 9Bishop, A.J.R., and Schiestl, R.H. (2000). Homologous recombination as a mechanism for genome rearrangements: Environmental and genetic effects. Hum. Mol. Genet. 9: 2427-2334.
  • 10Brosius, J. ( 1991). Retroposons--seeds of evolution. Science 251: 753.

共引文献6

同被引文献20

  • 1余敏,伍红,谭德勇.线粒体转录终止因子蛋白家族研究进展[J].生命科学,2007,19(5):496-500. 被引量:17
  • 2Sologub Mlu, Kochetkov S N, Temiakov D E. Transcription and its regulation in mammalian and human mitochondria [ J ]. Mol Biol ( Mosk ), 2009,43 ( 2 ) : 215 - 229.
  • 3Minczuk M, He J, Duch AM,et al. TEFM (c17ofr42) is necessary for transcription of human mtDNA[ J]. Nucleic Acid Res,2011,39 (10) :4284 -4299.
  • 4Agaronyan K, Morozov YI, Anikin M, et al. Mitochondrial biology. Replication- transcription switch in human mitochondria[ J]. Sci- ence ,2015,347 (6221) :548 - 551.
  • 5Posse V,Shahzad S,Falkenberg M,et al. TEFM is a potent stimula- tor of mitochondrial transcription elongation factor in vitro[ J ]. Nu- cleic Acid Res,2015,43 ( 5 ) :2615 - 2624.
  • 6Drakulic S, Wang L, Curllar J, et al. Yeast mitochondrial RNAP conformational changes are regulated by interactions with the mi- tochondrial transcription factor [ J ]. Nucleic Acids Res, 2014,42 (17) :11246 - 11260.
  • 7Markov DA, Wojtas ID, Tessitore K, et al. Yeast mitochondrial RNAP conformational changes are regulated by interactions with the mitochondrial transcription factor [ J ]. Mol Cell Bid ,2014,34 ( 13 ) :2360 - 2369.
  • 8Velazquez G, Sousa R, Brieba LG. The thumb subdomain of yeast mitochondrial RNA polymerase is involved in processivity, tran- script fidelity and mitochondrial transcription factor binding [ J ]. RNA Biol,2015,12(5) :514-524.
  • 9ROBERTI M,POLOSA P L,BRUNI F,et al. DmTTF,a novel mitochondrial transcription termination factor that recognis- es two sequences of Drosophila melanogaster mitochondrial DNA[J]. Nucleic Acids Res, 2003,31 (6) : 1597-1604.
  • 10ROBERTI M, POLOSA P L, BRUNI F, et al. MTERF fac- tors: a multifunction protein family [J]. Bio Mol Concepts, 2010, 1 (2) :215-224.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部