期刊文献+

基于蚁群粒子群混合算法的多目标优化在供水管网优化设计中的应用 被引量:1

The Application of Multi- Objective Optimization of Ant Colony Algorithm and Particle Swarm Algorithm in the Design of Optimization of Water Distribution System
下载PDF
导出
摘要 在城市供水系统中,管网的铺设费用占很大比重。如何最大限度降低建设成本而又保证供水的可靠性,是供水管网设计的重点和难点。基于供水管网的固有特性,结合蚁群、粒子群算法的优点,将蚁群粒子群混合算法应用到供水管网设计的多目标优化中。将蚁群中的信息素、启发因子、信息素挥发度参数映射到粒子群算法中粒子的位置坐标,通过粒子迭代寻找最优位置,并将蚁群算法通过特定信息素更新方式并限制迭代次数来进行优化,再将粒子最优位置反馈到优化后的蚁群算法中,寻找最优解。通过此算法,优化了供水管网中管径的选择,在保证供水管网可靠性的前提下,尽量缩减建设费用,为决策者提供更加经济实用的决策参考。 In water supply system in cities,the laying of pipe network accounts for a large proportion of the cost. It is an important and difficult part in the design of water distribution system to lower the cost and ensure the reliability of water supply at the same time. Based on the advantages of ant colony algorithm and particle swarm algorithm,this thesis applies them into the design of optimization of water distribution system with the aim to seek for the best solution. In this way,it optimizes the options of the diameter of water pipe. In the preposition of ensuring the reliability of water supply system,it can reduce the cost of construction.
作者 殷方康
机构地区 中国地质大学
出处 《山东商业职业技术学院学报》 2014年第4期102-105,共4页 Journal of Shandong Institute of Commerce and Technology
关键词 蚁群粒子群混合算法 多目标优化 供水管网 colony algorithm and particle swarm algorithm multi-objective optimization water supply system
  • 相关文献

参考文献7

二级参考文献43

  • 1王若鹏,邢志栋.无约束优化的一个组合算法[J].兰州理工大学学报,2004,30(5):143-145. 被引量:3
  • 2白丹.重力单水源环状管网优化设计的遗传-线性规划算法[J].水利学报,2005,36(3):378-382. 被引量:17
  • 3王烜,段常贵.改进遗传算法在燃气管网布局优化中的应用[J].哈尔滨工业大学学报,2006,38(1):46-48. 被引量:11
  • 4闵克学,葛宏伟,张毅,梁艳春.基于蚁群和粒子群优化的混合算法求解TSP问题[J].吉林大学学报(信息科学版),2006,24(4):402-405. 被引量:18
  • 5K E Parsopoulos, M N Vrahatis. Recent Approaehes to Global Optimization Problems Through Particle Swarm Optimization [ J ]. N atural Computing , 2002,1 (2 -3) :235 -306.
  • 6M Doritos, V Maniezzo, A Colorni. Positive feedback as a search strategy[ R]. Technical 91 - 016, Dipartimento di Elettronica, Politecnico di Milano, IT, 1991.
  • 7M Dorigo, G D Caro. Ant algorithms for discrete optimization [ J ]. Artificial Life, 1999, 5(3) :137 - 172.
  • 8M Dorigo, L M Gambardella. Ant colony system: a cooperative learning approach to the traveling salesman problem [ J ]. IEEE Transactions on Evolutionary Computation, 1997,1 (1) : 53 -66.
  • 9T Stutzle, H H Hoos. Max -min ant system[ J]. Future Generation Computer System, 2000,16 (8) :889 - 914.
  • 10R C Eberhart, J Kennedy. A new optimizer using particles swarm theory[ C]. Proc Sixth Int Symposium on Micro Machine and Human Science, Nagoya, 1995.39 -43.

共引文献136

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部