期刊文献+

约旦野生二棱大麦群体籽粒休眠特性的网络分析 被引量:3

The Network Analysis on Characters of Caryopsis Dormancy in Wild Barley (Hordeum spontaneum) Populations from Jordan
原文传递
导出
摘要 本研究以来自约旦的16个野生二棱大麦群体206个基因型为材料,对籽粒不同部分的氮素营养相关性状以及40℃下不同贮藏时间后的萌发率进行了测定,并利用网络相关性技术分析其与起源地生态地理因素之间的相关性。结果表明,来自于不同地区的大麦群体在种子含氮量、壳含氮量、种子可溶性蛋白质含量、单粒重及单壳重上存在明显差异,并且籽粒不同部位含氮量发生分配平衡,种子含氮量较高的群体壳含氮量较低。同时,网络相关性分析证实壳含氮量与籽粒萌发特性呈显著负相关,而壳中潜在抑制萌发的含氮物可能在42 d的高温储藏下分解或失活。 In this study, 206 genotypes of wild barley (Hordeum spontaneum) with 16 populations derived from different habitats of Jordan were studied for caryopsis nitrogen-related traits and germination characters under different storage time at 40 ℃. Also the correlations between those traits and eco-geographic factors were analyzed by correlation-based network analysis (CNA). The results showed that there are significant differences among the populations on the traits of seed nitrogen concentration, shell nitrogen concentration, seed soluble-protein concentration, single seed weight and single shell weight. The nitrogen trade-off occurred between the organs of seed and shell which makes the populations with high seed nitrogen concentration associated with low shell nitrogen concentration. Meanwhile, the results of CNA suggest the shell nitrogen concentration sig- nificantly negative-correlated with the germination characters of caryopsis, and the putative inhibitors in shell could be degraded or inactivated after the 42 days of storage at 40 ℃.
出处 《植物生理学报》 CAS CSCD 北大核心 2014年第8期1227-1237,共11页 Plant Physiology Journal
基金 贵州省国际科技合作计划项目[黔科合外G字(2012)7011] 四川省国际科技合作与交流研究计划项目(12GH0093) 国家科技部国际科技合作专项(S2013ZR0452)
关键词 野生二棱大麦 籽粒休眠 氮素营养 生态地理因素 Hordeum spontaneum caryopsis dormancy nitrogen nutrition eco-geographic factor
  • 相关文献

参考文献28

  • 1GrandoS,孙洪伟(1987).近缘野生植物在大麦育种中的利用.麦类作物学报,4:10-12.
  • 2严俊,王莹,Y.Gutterman,E.Nevo,程剑平.起源地生态地理因素对野生二棱大麦生长的影响[J].西南农业学报,2010,23(6):1799-1804. 被引量:8
  • 3严俊,王莹,Y.Gutterman,E.Nevo,程剑平.以色列“进化峡谷”野生二棱大麦种子休眠与幼苗抗旱研究(英文)[J].四川农业大学学报,2011,29(1):1-5. 被引量:1
  • 4杨建明,沈秋泉,汪军妹,朱靖环.我国大麦生产、需求与育种对策[J].大麦科学,2003(1):1-6. 被引量:57
  • 5Alonso-Blanco C, Bentsink L, Hanhart CJ, Blankestijn-de Vries H, Koornneef M (2003). Analysis of natural allelic variation at seed dormancy loci ofArabidopsis thaliana. Genetics, 164 (2): 711-729.
  • 6Baek HJ, Beharav A, Nevo E (2003). Ecological-genomic diversity of microsatellites in wild barley, Hordeum spontaneum, populations in Jordan. Theor Appl Genet, 106 (3): 397-410.
  • 7Bentsink L, Hanson J, Hanhart C J, Blankestijn-de Vries H, Coltrane C, Keizer P, EI-Lithy M, Alonso-Blancoe C, Teresa de Andrese M, Reymond Met al (2010). Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular path- ways. Proc Natl Acad Sci USA, 107 (9): 4264-4269.
  • 8Bentsink L, Jowett J, Hanhart C J, Koomneef M (2006). Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci USA, 103 (45): 17042-17047.
  • 9Bradford MM (1976). A rapid and sensitive method for the quantita- tion of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72 (1): 248-254.
  • 10Ciaffi M, Lafiandra D, Porceddu E, Benedettelli S (1993). Stor- age-protein variation in wild emmer wheat (Triticum turgidum ssp. dicoccoides) from Jordan and Turkey. I. Electrophoret-ic characterization of genotypes. Theor Appl Genet, 86 (4): 474-480.

二级参考文献21

  • 1Nevo E,Brown AHD,Zohary D.Genetic diversity in the wild progenitor of barley in Israel[J].Experientia,1979,35:1027-1029.
  • 2Nevo E.Origin,evolution,population genetics and resources for breeding of wild barley,Hordeum spontaneum,in the Fertile Crescent[A].In:Shewry P (eds) Barley:genetics,molecular biology and biotechnology[C].CAB International,1992.19-43.
  • 3Harlan J,Zohary D.Distribution of wild wheat and barley[J].Science,1966,153:1074-1080.
  • 4Nevo E,Beiles A,Gutterman Y,et al.Genetic resources of wild cereals in Israel and the vicinity:II Phenotypic variation within and between populations of wild barley,Hordeum spontaneum[J].Euphytica,1984,33:737-756.
  • 5Gutterman Y.Survival strategies of annual desert plants.Adaptations of desert organisms[M].Berlin,Heidelberg,New York:Springer-Verlag,2002.
  • 6Cynthia P,Ingrid H,Yvonne A,et al.Growth characteristics in H.spontaneum populations from different habitats[J].New Phytologist,2000,146:471-481.
  • 7Nevo E,Beiles A,Kaplan D,et al.Natural selection of allozyme polymorphism:a microsite test revealing ecological genetic differentiation in wild barley[J].Evolution,1986,40:13-20.
  • 8Zhang Q,Saghai Maroof MA,Kleinhofs A.Comparative diversity analysis of RFLPs and isozymes within and among populations of Hordeum vulgare ssp.Spontaneum[J].Genetics,1993,134:909-916.
  • 9Turpeinen T,Vanhala T,Nevo E,et al.AFLP genetic polymorphism in wild barley (Hordeum spontaneum) populations in Israel[J].Theoretical and Applied Genetics,2003,106:1333-1339.
  • 10Turpeinen T,Tenhola T,Manninen O,et al.Microsatellite diversity associated with ecology factors in Hordeum spontaneum populations in Israel[J].Molecular Ecology,2001,10:1577-1591.

共引文献63

同被引文献35

  • 1中国科学院中国植物志编辑委员会.中国植物志第九卷第二分册[M].北京:科学出版社,2002:20-21.
  • 2Hasterok R,Marasek A,Donnison I S,et al.Alignment of the genomes of Brachypodium distachyon and temperate cereals and grasses using bacterial artificial chromosome landing with fluorescence in situ hybridization[J].Genetics,2006,173(1):349-362.
  • 3Paterson A H,Bowers J E,Chapman B A.Ancient polyploidization predating divergence of the cereals,and its consequences for comparative genomics[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(26):9903-9908.
  • 4Vogel J P,Gu Y Q,Twigg P,et al.EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon[J].Theoretical and Applied Genetics,2006,113(2):186-195.
  • 5Draper J,Mur L A J,Jenkins G,et al.Brachypodium distachyon,A new model system for functional genomics in grasses[J].Plant Physiology,2001,127(4):1539-1555.
  • 6Christiansen P,Andersen C H,Didion T,et al.A rapid and efficient transformation protocol for the grass Brachypodium distachyon[J].Plant Cell Reports,2005,23(10-11):751-758.
  • 7Betekhtin A,Jenkins G,Hasterok R.Reconstructing the evolution of Brachypodium genomes using comparative chromosome painting[J].PLoS ONE,2014,9(12):e115108.
  • 8Glover-Cutter K M,Alderman S,Dombrowski J E,et al.Enhanced oxidative stress resistance through activation of a zinc deficiency transcription factor in Brachypodium distachyon[J].Plant Physiology,2014,166(3):1492-1505.
  • 9Hammami R,Jouve N,Soler C,et al.Genetic diversity of SSR and ISSR markers in wild populations of Brachypodium distachyon and its close relatives B-stacei and B-hybridum(Poaceae)[J].Plant Systematics and Evolution,2014,300(9):2029-2040.
  • 10Mandadi K K,Pyle J D,Scholthof K G.Comparative analysis of antiviral responses in Brachypodium distachyon and Setaria viridis reveals conserved and unique outcomes among C-3and C-4plant defenses[J].Molecular Plant-Microbe Interactions,2014,27(11):1277-1290.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部