摘要
针对BOF用氧量预报模型精度不高的问题,提出利用粒子群优化支持向量机的用氧量预报建模方法,以此来优化用氧量,进而提高钢液的质量。结果表明,与RBF、BP及SVM相比,粒子群优化支持向量机的BOF吹氧量预报模型精度高、推广能力强。
Aiming at the low accuracy of prediction models for BOF blowing oxygen volume, the modeling method of blowing oxygen volume prediction using particle swarm optimization support vector machine was proposed. The results show that, comparing to other algorithms, such as RBF, BP and SVM, the prediction model of BOF blowing oxygen volume using particle swarm optimization support vector machine has a higher modeling accuracy and better generalization ability.
出处
《铸造技术》
CAS
北大核心
2014年第8期1806-1809,共4页
Foundry Technology
基金
内蒙古自然科学基金重大项目资助(2011ZD08)
关键词
粒子群
支持向量机
用氧量预报
转炉炼钢
particle swarm
support vector machine
blowing oxygen volume prediction
BOF steelmaking