期刊文献+

静电纺聚己内酯/壳聚糖纳米纤维膜诱导骨髓间充质细胞成骨分化的研究 被引量:1

Study of Electrospun Polycaprolactone/chitosan Nano Fiber Membrane Induced Bone Marrow Mesenchymal Cells Differentiating into Osteoblasts
下载PDF
导出
摘要 目的:观察静电纺聚己内酯/壳聚糖纳米纤维膜对骨髓间充质细胞(BMSCs)粘附、增殖和成骨分化的影响。方法:通过静电纺丝技术制备聚己内酯/壳聚糖纳米纤维膜,将第4代BMSCs接种于纤维膜,扫描电镜、碱性磷酸酶(ALP)和茜素红染色、MTT检测BMSCs粘附、分化及增殖能力。结果:在静电纺丝技术制备的聚己内酯/壳聚糖纳米纤维膜表面,BMSCs的黏附和增殖增强,呈现明显升高的ALP活性,并形成矿化结节,提示具有向成骨细胞方向分化的倾向。结论:静电纺聚己内酯/壳聚糖纳米纤维膜对BMSCs的细胞相容性较好,适合BMSCs的黏附生长,具有诱导其向成骨细胞分化的潜能,有望成为一种新型牙周组织工程支架材料。 Objective: To observe of electrospun polycaprolactone/chitosan nano fiber membrane on bone marrow mesenchymal stem cells (BMSCs) adhesion, proliferation and osteogenic differentiation. Methods: Electrospun polycaprolactone/chitosan nano fiber membrane was prepared by the electrospining technique. The fourth generation of BMSCs were inoculated in the fiber membrane, scanning electron microscope(SEM), alkaline phosphatase (ALP) and alizarin red staining. MTT was used to the adhesion, differentiation and proliferation of BMSCs. Results.. In the surface of electrospun polycaprolactone/chitosan nano fiber membrane, the adhesion and proliferation of BMSCs were strengthened. It showed that ALP activity was significantly increased and formed the mineralized nodule, which was suggested that the cells had the tendency of differentiating into osteoblasts. Conclusion.. Electrospun polycaprolactone/chitosan nano fiber membrane has favourable cell compatibility. It promotes the adhesion and growth of BMSCs and has the potential of inducing osteogenic differentiation. It is expected to become a new type of periodontal tissue engineering scaffold materials.
出处 《口腔医学研究》 CAS CSCD 2014年第8期704-708,共5页 Journal of Oral Science Research
基金 国家自然科学基金(编号:81201191) 安徽医科大学博士科研基金资助项目(XJ201108) 安徽医科大学中青年学术骨干资助基金
关键词 静电纺丝 组织工程 壳聚糖 聚己内酯 骨髓间充质干细胞 Electrospinning Tissue engineering Chitosan Polycaprolactone Bone marrow mesenchymal stem cells
  • 相关文献

参考文献8

二级参考文献90

共引文献67

同被引文献40

  • 1Rohner D, Hutmacher D W, See P, et al. Individually CAD-CAM technique designed, bioresorbable 3-dimen- sional polycaprolactone framework for experimental re- construction of craniofacial defects in the pig[J]. Mund Kiefer Gesichtschir, 2002, 6(3) : 162- 167.
  • 2Cristescu R, Doraiswamy A, Socol G, et al. Polycapro- lactone biopolymer thin films obtained by matrix assis- ted pulsed laser evaporation[J]. Appl Surf Sci, 2007, 253(15) : 6476-6479.
  • 3Zhang H N, Hollister S. Comparison of bone marrow stromal cell behaviors on poly(eaprolactone) with or without surface modification: studies on cell adhesion, survival and proliferation[J]. J Biomater Sci, Polym Ed, 2009, 20(14) :1975-1993.
  • 4Lu Z F, Roohani-Esfahani S I, Kwok P C L, etal. Os- teoblasts on rod shaped hydroxyapatite nanoparticles in- corporated PCL film provide an optimal osteogenic niche for stem cell differentiation [J]. Tissue Engineering, Part A, 2011, 17(11/12) :1651-1661.
  • 5Guarino V, Alvarez-Perez M, Cirillo V, et al. hMSC interaction with PCL and PCL/gelatin platforms: A comparative study on films and electrospun membranes [J]. J Bioact Compat Polym, 2011, 26(2):144-160.
  • 6Tran P A, Biswas D P, O'Connor A J. Simple one-step method to produce titanium dioxide-polycapmlactone com- posite films with increased hydrophilicity, enhanced cellular interaction and improved degradation for skin tissue engi- neering[J]. J Mater Sci, 2014, 49(18) =6373-6382.
  • 7Ajami-Henriquez D, Rodriguez M, Sabino M, et al. E- valuation of cell affinity on poly(L-lactide) and poly(ep- silon-caprolactone) blends and on PLLA b-PCL diblock copolymer surfaces[J]. J Biomed Mater Res Part A, 2008, 87A(2) :405-417.
  • 8Potschke P, Kobashi K, Villmow T, et al. Liquid sensing properties of melt processed polypropylene/poly (epsilon-caprolactone) blends containing multiwalled carbon nanotubes[J]. Compos Sci Technol, 2011, 71 (12):1451-1460.
  • 9Yahiaoui F, Benhacine F, Ferfera-Harrar H, et al. De- velopment of antimicrobiai PCL/nanoclay nanocompos- ite films with enhanced mechanical and water vapor bar- rier properties for packaging applications [J]. Polym Bull, 2015, 72(2):235-254.
  • 10Pawar S P, Kumar S, Misra A, et al. Enzyrnatically degradable EMI shielding materials derived from PCL based nanocomposites[J]. Rsc Adv, 2015, 5(23): 17716-17725.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部