期刊文献+

基于无相关判别稀疏投影的人脸识别方法 被引量:1

Uncorrelated sparsity discriminant projections for face recognition
下载PDF
导出
摘要 针对人脸识别问题,提出了一种无相关判别稀疏投影(uncorrelated discriminant sparse projections,UDSP)方法。该方法通过设计一个无相关约束基于差的最优化目标,同时增加判别信息到稀疏保持投影(sparsity preserving projections,SPP)的目标函数,不仅保持了SPP的稀疏重构结构关系,而且利用了全局判别结构。同时,通过强加合适约束使得提取的特征统计无相关。最后,在FERET人脸库上进行了实验,证明了该方法的有效性。 A method of uncorrelated discriminant sparse projections (UDSP) is proposed .Through the design of a new uncorrelated constraint difference-based optimal objective and the addition of the ob-jective function from the discriminant information to the sparsity preserving projections (SPP ) ,the UDSP method not only preserves the sparse reconstructive relationship of SPP but also utilizes the global discriminant structures .Meanwhile ,an appropriate constraint is imposed to make the extracted features statistically uncorrelated .Experiments on the FERET face database verify the effectiveness of the proposed UDSP method .
出处 《海军工程大学学报》 CAS 北大核心 2014年第4期55-58,共4页 Journal of Naval University of Engineering
基金 河南省科学技术厅科技计划资助项目(122400450104) 河南省教育厅科学研究重点计划资助项目(14A520055)
关键词 人脸识别 特征提取 子空间学习 稀疏表征 类间散度 face recognition feature extraction subspace learning sparse representation between-class scatter
  • 相关文献

参考文献15

  • 1ZHAO W,CHEI.I.APPA t3,PHILLIPS P J,et al.Face recognition:A literature survey [J].ACM Computing Surveys,2003,35(4):399-458.
  • 2闫德勤,刘胜蓝,李燕燕.一种基于稀疏嵌入分析的降维方法[J].自动化学报,2011,37(11):1306-1312. 被引量:21
  • 3王国强,李龙星,郭晓波.基于稀疏保持判别嵌入的人脸识别[J].仪器仪表学报,2014,35(2):305-312. 被引量:6
  • 4TURK M,PENTLAND A.Eigenfaces for recog-nition[J].Journal of Cognitive Neuroscience,1991,3(1):72-86.
  • 5BELHUMEUR P N,HESPANHA J P,KRIEG-MAN D J.Eigenfaces vs.fisherfaces:Recogni-tion using class specific linear proiection [J].IEEE Transactions on Pattern Analysis and Ma-chine Intelligence,1997,19(7):711-720.
  • 6TENERBAUM J B,DE SILVA V,LANGFORD J.A global geometric framework for nonlinear di-mensionality reduction[J].Science,2000,290(5500):2319-2323.
  • 7ROWEIS S T,SAUL L K.Nonlinear dimensio-nality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
  • 8MIKHAIL B.Laplacian eigenmaps for dimensio-nality reduction and data representation [J].Neu-ral Computation,2003,15(6):1373-1396.
  • 9ZHANG Zheng-yu,ZHA Hong-yuan.Principle ma-nifolds and nonlinear dimensionality reduction via local tangent space alignment [J].SIAM Journal of Scientific Computing,2004,26(1):313-338.
  • 10HE X F,YAN S,HU Y,et al.Face recognition using Laplacianfaces [J].IEEE Transaction on pattern analysis and machine intelligence,2005,27(3):328-340.

二级参考文献24

  • 1HU Jie, ZHANG Yujun, LI Peng, WANG Hui, HUANG Lan & HU YuanzhongState Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China,Department of Physics, Tsinghua University, Beijing 100084, China,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.Micro-mechanical analysis of dynamic processes of nanomanipulation[J].Science China(Physics,Mechanics & Astronomy),2004,47(z1):88-92. 被引量:28
  • 2TURK M,PENTLAND A. Eigenface for recognition[J].Journal of Cognitive Neuoscience,1991,(01):71-86.
  • 3BELHUMEUR P,HESPANHA J,KRIEGMAN D. Eigenfaces vs.Fisherfaces:Recognition using class specific finear projection[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,(07):711-720.
  • 4CHEN L F,LIAO H Y M,KO M T. A new LDA-based face recognition system which can solve the small sample size problem[J].{H}Pattern Recognition Letters,2000,(10):1713-1726.
  • 5SONG F X,ZHANG D. A parameterized direct LDA and its application to face recognition[J].{H}NEUROCOMPUTING,2007.191-196.
  • 6ROWEIS S L,SAUL L. Nonlinear dimensionality reduction by locally linear embedding[J].{H}SCIENCE,2000,(5500):2323-2326.
  • 7BELKIN M,NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representaiton[J].{H}Neural Computation,2003,(06):1373-1396.
  • 8ZHANG Z Y,ZHA H Y. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J].{H}SIAM Journal of Scientific Computing,2004,(01):313-338.
  • 9BENGIO Y,PAIEMENT J,VINCENT P. Out of sample extensions for LLE,isomap,MDS,eigenmaps,and spectral clustering[A].2003.
  • 10HE X F,CAI D,YAN S C. Neighborhood preserving embedding[A].2005.1208-1213.

共引文献25

同被引文献18

  • 1Belhumeur P N,Hespanha J P,Kriegman D J.Eigenfacesvs. fisherfaces:recognition using class specific linear projection[J].Pattern Analysis and Machine Intelligence,1997(7):711-720.
  • 2He X,Yan S,Hu Y,et al.Face recognition using Laplacianfaces[J].Pattern Analysis and Machine Intelligence,2005,27(3):328-340.
  • 3Patel V M,Chellappa R.Sparse representation and compressivesensing,dictionaries for pattern recognition[C]//Proceedings of Asian Conference on Pattern Recognition(ACPR),2011:325-329.
  • 4Wright J,Ma Y,Mairal J,et al.Sparse representation forcomputer vision and pattern recognition[J].Proceedingsof IEEE,Special Issue on Applications of CompressiveSensing & Sparse Representation,2010,98(6):1031-1044.
  • 5Zhang Haichao,Zhang Yanning,Huang T S.Simultaneousdiscriminative projection and dictionary learning for sparserepresentation based classification[J].Pattern Recognition,2013,46(1):346-354.
  • 6Mairal J,Bach F,Ponce J,et al.Discriminative learned dictionariesfor local image analysis[C]//Proceedings of IEEEConference on Computer Vision and Pattern Recogniton,2008:1-8.
  • 7Gao Shenghua,Tsang I W H,Chia L T,et al.Kernel sparserepresentation for image classification and face recognition[C]//11th European Conference on Computer Vision,Heraklion,Crete,Greece,2010:1-14.
  • 8Li Jiang,Lu Canyi.A new decision rule for sparse representationbased classification for face recognition[J].Neurocomputing,2013,116:265-271.
  • 9Wright J.Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and MachineInelligence,2009,31(2):210-227.
  • 10Yang M,Zhang L.Gabor feature based sparse representationfor face recognition with Gabor occlusion dictionary[C]//ECCV’10,2010:448-461.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部